Cavendish Laboratory, Department of Physics, University of Cambridge , JJ Thomson Avenue, Cambridge, CB3 0HE United Kingdom.
Max Planck Institute for Solid State Research , Heisenbergstraße 1, 70569 Stuttgart, Germany.
Nano Lett. 2016 Nov 9;16(11):7155-7162. doi: 10.1021/acs.nanolett.6b03455. Epub 2016 Oct 31.
We report on both the intrinsic and the extrinsic stability of a formamidinium lead bromide [CH(NH)PbBr = FAPbBr] perovskite solar cell that yields a high photovoltage. The fabrication of FAPbBr devices, displaying an outstanding photovoltage of 1.53 V and a power conversion efficiency of over 8%, was realized by modifying the mesoporous TiO-FAPbBr interface using lithium treatment. Reasons for improved photovoltaic performance were revealed by a combination of techniques, including photothermal deflection absorption spectroscopy (PDS), transient-photovoltage and charge-extraction analysis, and time-integrated and time-resolved photoluminescence. With lithium-treated TiO films, PDS reveals that the TiO-FAPbBr interface exhibits low energetic disorder, and the emission dynamics showed that electron injection from the conduction band of FAPbBr into that of mesoporous TiO is faster than for the untreated scaffold. Moreover, compared to the device with pristine TiO, the charge carrier recombination rate within a device based on lithium-treated TiO film is 1 order of magnitude lower. Importantly, the operational stability of perovskites solar cells examined at a maximum power point revealed that the FAPbBr material is intrinsically (under nitrogen) as well as extrinsically (in ambient conditions) stable, as the unsealed devices retained over 95% of the initial efficiency under continuous full sun illumination for 150 h in nitrogen and dry air and 80% in 60% relative humidity (T = ∼60 °C). The demonstration of high photovoltage, a record for FAPbBr, together with robust stability renders our work of practical significance.
我们报告了钙钛矿太阳能电池的固有和外在稳定性,该钙钛矿由甲脒碘化铅(CH(NH)PbBr = FAPbBr)制成,能产生高光电电压。通过用锂处理修饰介孔 TiO-FAPbBr 界面,实现了 FAPbBr 器件的制造,该器件显示出 1.53 V 的出色光电电压和超过 8%的功率转换效率。通过结合多种技术,包括光热偏转吸收光谱(PDS)、瞬态光电压和电荷提取分析以及时间积分和时间分辨光致发光,揭示了提高光伏性能的原因。对于用锂处理的 TiO 薄膜,PDS 表明 TiO-FAPbBr 界面表现出低能量无序,并且发射动力学表明 FAPbBr 的导带中的电子注入到介孔 TiO 中的速度比未经处理的支架更快。此外,与具有原始 TiO 的器件相比,基于锂处理的 TiO 薄膜的器件中的载流子复合速率低 1 个数量级。重要的是,在最大功率点下检查的钙钛矿太阳能电池的工作稳定性表明,FAPbBr 材料本质上(在氮气中)以及外在(在环境条件下)稳定,因为未密封的器件在氮气和干燥空气中连续 150 小时的全阳光照射下保留了初始效率的 95%以上,在相对湿度为 60%(T = ∼60°C)时保留了 80%。高光电电压的演示,创下了 FAPbBr 的记录,以及稳健的稳定性,使我们的工作具有实际意义。