Romero-Pérez Carlos, Delgado Natalia Fernández, Herrera-Collado Miriam, Calvo Mauricio E, Míguez Hernán
Instituto de Ciencias de Materiales de Sevilla (Consejo Superior de Investigaciones Científicas-Universidad de Sevilla), C/Américo Vespucio, 49, Sevilla 41092, Spain.
Department of Material Science, Metallurgical Engineering and Inorganic Chemistry IMEYMAT, Facultad de Ciencias (Universidad de Cádiz), Campus Río San Pedro, s/n, Puerto Real, Cádiz 11510, Spain.
Chem Mater. 2023 Jul 7;35(14):5541-5549. doi: 10.1021/acs.chemmater.3c00934. eCollection 2023 Jul 25.
Achieving highly transparent and emissive films based on perovskite quantum dots (PQDs) is a challenging task since their photoluminescence quantum yield (PLQY) typically drops abruptly when they are used as building blocks to make a solid. In this work, we obtain highly transparent films containing FAPbBr quantum dots that display a narrow green emission (λ = 530 nm, full width at half-maximum (FWHM) = 23 nm) with a PLQY as high as 86%. The method employed makes use of porous matrices that act as arrays of nanoreactors to synthesize the targeted quantum dots within their void space, providing both a means to keep them dispersed and a protective environment. Further infiltration with poly(methyl methacrylate) (PMMA) increases the mechanical and chemical stability of the ensemble and serves to passivate surface defects, boosting the emission of the embedded PQD and significantly reducing the width of the emission peak, which fulfills the requirements established by the Commission Internationale de l'Éclairage (CIE) to be considered an ultrapure green emitter. The versatility of this approach is demonstrated by fabricating a color-converting layer that can be easily transferred onto a light-emitting device surface to modify the spectral properties of the outgoing radiation.
基于钙钛矿量子点(PQD)制备高透明且发光的薄膜是一项具有挑战性的任务,因为当它们用作构建固体的基本单元时,其光致发光量子产率(PLQY)通常会急剧下降。在这项工作中,我们获得了包含FAPbBr量子点的高透明薄膜,该薄膜呈现出窄的绿色发射(λ = 530 nm,半高宽(FWHM)= 23 nm),PLQY高达86%。所采用的方法利用多孔基质作为纳米反应器阵列,在其空隙空间内合成目标量子点,既提供了使它们保持分散的手段,又提供了一个保护环境。用聚甲基丙烯酸甲酯(PMMA)进一步渗透可提高整体的机械和化学稳定性,并用于钝化表面缺陷,增强嵌入PQD的发射并显著减小发射峰的宽度,这满足了国际照明委员会(CIE)规定的被视为超纯绿色发射体的要求。通过制造一种可轻松转移到发光器件表面以改变出射辐射光谱特性的颜色转换层,证明了这种方法的通用性。