Weisenhorn Erin M M, van T Erve Thomas J, Riley Nicholas M, Hess John R, Raife Thomas J, Coon Joshua J
From the ‡Integrated Program in Biochemistry.
§Biomolecular Chemistry.
Mol Cell Proteomics. 2016 Dec;15(12):3614-3623. doi: 10.1074/mcp.M116.062349. Epub 2016 Oct 24.
Each year over 90 million units of blood are transfused worldwide. Our dependence on this blood supply mandates optimized blood management and storage. During storage, red blood cells undergo degenerative processes resulting in altered metabolic characteristics which may make blood less viable for transfusion. However, not all stored blood spoils at the same rate, a difference that has been attributed to variable rates of energy usage and metabolism in red blood cells. Specific metabolite abundances are heritable traits; however, the link between heritability of energy metabolism and red blood cell storage profiles is unclear. Herein we performed a comprehensive metabolomics and proteomics study of red blood cells from 18 mono- and di-zygotic twin pairs to measure heritability and identify correlations with ATP and other molecular indices of energy metabolism. Without using affinity-based hemoglobin depletion, our work afforded the deepest multi-omic characterization of red blood cell membranes to date (1280 membrane proteins and 330 metabolites), with 119 membrane protein and 148 metabolite concentrations found to be over 30% heritable. We demonstrate a high degree of heritability in the concentration of energy metabolism metabolites, especially glycolytic metabolites. In addition to being heritable, proteins and metabolites involved in glycolysis and redox metabolism are highly correlated, suggesting that crucial energy metabolism pathways are inherited en bloc at distinct levels. We conclude that individuals can inherit a phenotype composed of higher or lower concentrations of these proteins together. This can result in vastly different red blood cells storage profiles which may need to be considered to develop precise and individualized storage options. Beyond guiding proper blood storage, this intimate link in heritability between energy and redox metabolism pathways may someday prove useful in determining the predisposition of an individual toward metabolic diseases.
全球每年输血超过9000万单位。我们对这种血液供应的依赖要求优化血液管理和储存。在储存过程中,红细胞会经历退化过程,导致代谢特征改变,这可能会使血液在输血时的生存能力降低。然而,并非所有储存的血液都以相同的速度变质,这种差异归因于红细胞能量使用和代谢的不同速率。特定代谢物丰度是可遗传的性状;然而,能量代谢的遗传性与红细胞储存特征之间的联系尚不清楚。在此,我们对18对单卵和双卵双胞胎的红细胞进行了全面的代谢组学和蛋白质组学研究,以测量遗传性并确定与ATP和其他能量代谢分子指标的相关性。在不使用基于亲和力的血红蛋白去除方法的情况下,我们的工作提供了迄今为止对红细胞膜最深层次的多组学表征(1280种膜蛋白和330种代谢物),发现119种膜蛋白和148种代谢物浓度具有超过30%的遗传性。我们证明了能量代谢代谢物浓度具有高度遗传性,尤其是糖酵解代谢物。除了具有遗传性外,参与糖酵解和氧化还原代谢的蛋白质和代谢物高度相关,这表明关键的能量代谢途径在不同水平上整体遗传。我们得出结论,个体可以共同遗传由这些蛋白质浓度较高或较低组成的表型。这可能导致截然不同的红细胞储存特征,在制定精确和个性化的储存方案时可能需要考虑这一点。除了指导正确的血液储存外,能量和氧化还原代谢途径之间这种紧密的遗传联系有朝一日可能在确定个体对代谢疾病的易感性方面证明是有用的。