Zhou Jie, Zou Yong, Guan Shuguang, Liu Zonghua, Boccaletti S
Department of Physics, East China Normal University, Shanghai 200241, China.
CNR-Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy.
Sci Rep. 2016 Oct 25;6:35979. doi: 10.1038/srep35979.
Networks whose structure of connections evolves in time constitute a big challenge in the study of synchronization, in particular when the time scales for the evolution of the graph topology are comparable with (or even longer than) those pertinent to the units' dynamics. We here focus on networks with a slow-switching structure, and show that the necessary conditions for synchronization, i.e. the conditions for which synchronization is locally stable, are determined by the time average of the largest Lyapunov exponents of transverse modes of the switching topologies. Comparison between fast- and slow-switching networks allows elucidating that slow-switching processes prompt synchronization in the cases where the Master Stability Function is concave, whereas fast-switching schemes facilitate synchronization for convex curves. Moreover, the condition of slow-switching enables the introduction of a control strategy for inducing synchronization in networks with arbitrary structure and coupling strength, which is of evident relevance for broad applications in real world systems.
连接结构随时间演化的网络在同步研究中构成了巨大挑战,特别是当图拓扑结构的演化时间尺度与(甚至长于)单元动力学相关的时间尺度相当时。我们在此关注具有慢切换结构的网络,并表明同步的必要条件,即同步局部稳定的条件,由切换拓扑横向模式的最大李雅普诺夫指数的时间平均值决定。快速切换网络和慢切换网络之间的比较表明,在主稳定性函数为凹的情况下,慢切换过程会促进同步,而快速切换方案则有利于凸曲线的同步。此外,慢切换条件使得能够引入一种控制策略,用于在具有任意结构和耦合强度的网络中诱导同步,这对于实际系统中的广泛应用具有明显的相关性。