Suppr超能文献

使用高斯基组的大规模立方标度随机相位近似相关能计算

Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis.

作者信息

Wilhelm Jan, Seewald Patrick, Del Ben Mauro, Hutter Jürg

机构信息

Department of Chemistry and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), University of Zurich , 8057 Zurich, Switzerland.

Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.

出版信息

J Chem Theory Comput. 2016 Dec 13;12(12):5851-5859. doi: 10.1021/acs.jctc.6b00840. Epub 2016 Nov 4.

Abstract

We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.

摘要

我们提出了一种用于在高斯基组中计算随机相位近似(RPA)相关能的算法,该算法需要[公式:见正文]次运算和[公式:见正文]的内存。该方法基于使用重叠度量的单位分解(RI)、高斯基组中RI - RPA的重新表述、虚时间和虚频率积分技术以及稀疏线性代数的运用。通过一种克服规范RPA实现内存瓶颈的迭代方案,可以在不进行额外计算的情况下进一步减少内存。我们报告了一种大规模并行实现,这是应用于大型系统的关键。最后,使用相关一致的三重ζ质量基组将立方标度RPA应用于一千个水分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验