Burow Asbjörn M, Bates Jefferson E, Furche Filipp, Eshuis Henk
University of California, Irvine , Department of Chemistry, 1102 Natural Sciences II, Irvine, California 92697-2025, United States of America.
Montclair State University , Department of Chemistry and Biochemistry, 1 Normal Avenue, Montclair, New Jersey 07043, United States of America.
J Chem Theory Comput. 2014 Jan 14;10(1):180-94. doi: 10.1021/ct4008553. Epub 2013 Dec 16.
The random phase approximation (RPA) is an increasingly popular method for computing molecular ground-state correlation energies within the adiabatic connection fluctuation-dissipation theorem framework of density functional theory. We present an efficient analytical implementation of first-order RPA molecular properties and nuclear forces using the resolution-of-the-identity (RI) approximation and imaginary frequency integration. The centerpiece of our approach is a variational RPA energy Lagrangian invariant under unitary transformations of occupied and virtual reference orbitals, respectively. Its construction requires the solution of a single coupled-perturbed Kohn-Sham equation independent of the number of perturbations. Energy gradients with respect to nuclear displacements and other first-order properties such as one-particle densities or dipole moments are obtained from partial derivatives of the Lagrangian. Our RPA energy gradient implementation exhibits the same [Formula: see text] scaling with system size N as a single-point RPA energy calculation. In typical applications, the cost for computing the entire gradient vector with respect to nuclear displacements is ∼5 times that of a single-point RPA energy calculation. Derivatives of the quadrature nodes and weights used for frequency integration are essential for RPA gradients with an accuracy consistent with RPA energies and can be included in our approach. The quality of RPA equilibrium structures is assessed by comparison to accurate theoretical and experimental data for covalent main group compounds, weakly bonded dimers, and transition metal complexes. RPA outperforms semilocal functionals as well as second-order Møller-Plesset (MP2) theory, which fails badly for the transition metal compounds. Dipole moments of polarizable molecules and weakly bound dimers show a similar trend. RPA harmonic vibrational frequencies are nearly of coupled cluster singles, doubles, and perturbative triples quality for a set of main group compounds. Compared to the ring-coupled cluster based implementation of Rekkedal et al. [J. Chem. Phys. 2013, 139, 081101.], our method scales better by two powers of N and supports a semilocal Kohn-Sham reference. The latter is essential for the good performance of RPA in small-gap systems.
随机相位近似(RPA)是一种在密度泛函理论的绝热连接涨落耗散定理框架内计算分子基态相关能的越来越流行的方法。我们使用单位分解(RI)近似和虚频积分,给出了一阶RPA分子性质和核力的高效解析实现。我们方法的核心是一个变分RPA能量拉格朗日量,它分别在占据和虚参考轨道的酉变换下不变。其构建需要求解一个与微扰数无关的单一耦合微扰Kohn-Sham方程。相对于核位移的能量梯度以及其他一阶性质,如一粒子密度或偶极矩,是从拉格朗日量的偏导数得到的。我们的RPA能量梯度实现与单点RPA能量计算一样,随系统大小N呈现相同的[公式:见正文]缩放比例。在典型应用中,计算相对于核位移的整个梯度向量的成本约为单点RPA能量计算的5倍。用于频率积分的求积节点和权重的导数对于具有与RPA能量一致精度的RPA梯度至关重要,并且可以包含在我们的方法中。通过与共价主族化合物、弱键二聚体和过渡金属配合物的精确理论和实验数据进行比较,评估了RPA平衡结构的质量。RPA优于半局域泛函以及二阶Møller-Plesset(MP2)理论,MP2理论对于过渡金属化合物表现很差。可极化分子和弱键二聚体的偶极矩显示出类似的趋势。对于一组主族化合物,RPA谐波振动频率几乎具有耦合簇单、双和微扰三激发的质量。与Rekkedal等人基于环耦合簇的实现方法[《化学物理杂志》2013年,139卷,081101页]相比,我们的方法按N的平方更好地缩放,并且支持半局域Kohn-Sham参考。后者对于RPA在小能隙系统中的良好性能至关重要。