Espinosa J R, Young J M, Jiang H, Gupta D, Vega C, Sanz E, Debenedetti P G, Panagiotopoulos A Z
Departamento de Quimica Fisica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
J Chem Phys. 2016 Oct 21;145(15):154111. doi: 10.1063/1.4964725.
Direct coexistence molecular dynamics simulations of NaCl solutions and Lennard-Jones binary mixtures were performed to explore the origin of reported discrepancies between solubilities obtained by direct interfacial simulations and values obtained from the chemical potentials of the crystal and solution phases. We find that the key cause of these discrepancies is the use of crystal slabs of insufficient width to eliminate finite-size effects. We observe that for NaCl crystal slabs thicker than 4 nm (in the direction perpendicular to the interface), the same solubility values are obtained from the direct coexistence and chemical potential routes, namely, 3.7 ± 0.2 molal at T = 298.15 K and p = 1 bar for the JC-SPC/E model. Such finite-size effects are absent in the Lennard-Jones system and are likely caused by surface dipoles present in the salt crystals. We confirmed that μs-long molecular dynamics runs are required to obtain reliable solubility values from direct coexistence calculations, provided that the initial solution conditions are near the equilibrium solubility values; even longer runs are needed for equilibration of significantly different concentrations. We do not observe any effects of the exposed crystal face on the solubility values or equilibration times. For both the NaCl and Lennard-Jones systems, the use of a spherical crystallite embedded in the solution leads to significantly higher apparent solubility values relative to the flat-interface direct coexistence calculations and the chemical potential values. Our results have broad implications for the determination of solubilities of molecular models of ionic systems.
进行了NaCl溶液和Lennard-Jones二元混合物的直接共存分子动力学模拟,以探究直接界面模拟得到的溶解度与晶体和溶液相化学势得到的值之间所报道差异的来源。我们发现这些差异的关键原因是使用了宽度不足的晶体平板来消除有限尺寸效应。我们观察到,对于厚度大于4 nm(垂直于界面方向)的NaCl晶体平板,直接共存和化学势途径得到的溶解度值相同,即对于JC-SPC/E模型,在T = 298.15 K和p = 1 bar时为3.7±0.2摩尔浓度。在Lennard-Jones系统中不存在这种有限尺寸效应,其可能由盐晶体中存在的表面偶极子引起。我们证实,要从直接共存计算中获得可靠的溶解度值,需要进行微秒级的分子动力学运行,前提是初始溶液条件接近平衡溶解度值;对于浓度差异显著的情况,需要更长时间的运行来达到平衡。我们没有观察到暴露晶面对溶解度值或平衡时间的任何影响。对于NaCl和Lennard-Jones系统,相对于平面界面直接共存计算和化学势值,使用嵌入溶液中的球形微晶会导致明显更高的表观溶解度值。我们的结果对离子系统分子模型溶解度的测定具有广泛的意义。