Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Nanoscale. 2016 Nov 10;8(44):18710-18717. doi: 10.1039/c6nr05635k.
While optical properties of graphene in the visible region are solely defined by the frequency-independent fine structure constant, an onset of absorption has been observed in the infrared region due to Pauli blocking of interband transitions. Here, we report a complete absorption quenching in the infrared region by coating graphene with bis(trifluoromethanesulfonyl)amine (TFSA), an optically transparent p-type chemical dopant. The Fermi level downshift due to TFSA doping results in enhanced transmission in the infrared region proportional to the doping concentration. An absorption quenching onset method, developed in our work, to extract the Fermi level shift in pristine and doped graphene agrees with values extracted from Raman G-band and 2D-band shifts, Hall measurements and the binding energy shift observed in X-ray photo-electron spectroscopy. Performing simple UV-visible transmittance spectroscopy to obtain the absorption quenching onset of graphene also allows detection of environmental and substrate effects via Fermi level shift. Our method opens up the practical implementation of this unique phenomenon of graphene in future optoelectronic devices.
虽然在可见光区域石墨烯的光学性质仅由与频率无关的精细结构常数定义,但由于带间跃迁的泡利阻塞,在红外区域已经观察到吸收的起始。在这里,我们通过用双(三氟甲烷磺酰基)亚胺(TFSA)涂覆石墨烯来报告在红外区域完全吸收猝灭,TFSA 是一种光学透明的 p 型化学掺杂剂。由于 TFSA 掺杂引起的费米能级下移导致在红外区域的透射增强与掺杂浓度成正比。我们工作中开发的吸收猝灭起始方法,用于提取原始和掺杂石墨烯中的费米能级位移,与从拉曼 G 带和 2D 带位移、霍尔测量和 X 射线光电子能谱中观察到的结合能位移提取的值一致。通过执行简单的紫外可见透射光谱来获得石墨烯的吸收猝灭起始,也可以通过费米能级位移来检测环境和衬底效应。我们的方法为未来光电设备中石墨烯这一独特现象的实际应用开辟了道路。