State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
J Am Chem Soc. 2011 Apr 20;133(15):5941-6. doi: 10.1021/ja110939a. Epub 2011 Mar 24.
We use anhydrous ferric chloride (FeCl(3)) to intercalate graphite flakes consisting of 2-4 graphene layers and to dope graphene monolayers. The intercalant, staging, stability, and doping of the resulting intercalation compounds (ICs) are characterized by Raman scattering. The G peak of heavily doped monolayer graphene upshifts to ∼1627 cm(-1). The 2-4 layer ICs have similar upshifts, and a Lorentzian line shape for the 2D band, indicating that each layer behaves as a decoupled heavily doped monolayer. By performing Raman measurements at different excitation energies, we show that, for a given doping level, the 2D peak can be suppressed by Pauli blocking for laser energy below the doping level. Thus, multiwavelength Raman spectroscopy allows a direct measurement of the Fermi level, complementary to that derived by performing measurements at fixed excitation energy significantly higher than the doping level. This allows us to estimate a Fermi level shift of up to ∼0.9 eV. These ICs are thus ideal test-beds for the physical and chemical properties of heavily doped graphenes.
我们使用无水三氯化铁(FeCl(3))来插层由 2-4 个石墨烯层组成的石墨薄片,并掺杂石墨烯单层。通过拉曼散射来对插层化合物(ICs)的插层剂、分层、稳定性和掺杂进行表征。高度掺杂的单层石墨烯的 G 峰向约 1627 cm(-1) 偏移。2-4 层 ICs 具有相似的上移,并且 2D 带具有洛伦兹线型,表明每个层都表现为解耦的高度掺杂单层。通过在不同激发能量下进行拉曼测量,我们表明,对于给定的掺杂水平,对于低于掺杂水平的激光能量,通过泡利阻塞可以抑制 2D 峰。因此,多波长拉曼光谱法允许直接测量费米能级,这与在显著高于掺杂水平的固定激发能量下进行测量得出的结果互补。这使我们能够估计高达约 0.9 eV 的费米能级位移。因此,这些 IC 是研究高度掺杂石墨烯的物理和化学性质的理想试验台。