Suppr超能文献

人类T细胞的单细胞RNA测序

Single-Cell RNA Sequencing of Human T Cells.

作者信息

Villani Alexandra-Chloé, Shekhar Karthik

机构信息

Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, USA.

Center for Cancer Immunotherapy, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Methods Mol Biol. 2017;1514:203-239. doi: 10.1007/978-1-4939-6548-9_16.

Abstract

Understanding how populations of human T cells leverage cellular heterogeneity, plasticity, and diversity to achieve a wide range of functional flexibility, particularly during dynamic processes such as development, differentiation, and antigenic response, is a core challenge that is well suited for single-cell analysis. Hypothesis-free evaluation of cellular states and subpopulations by transcriptional profiling of single T cells can identify relationships that may be obscured by targeted approaches such as FACS sorting on cell-surface antigens, or bulk expression analysis. While this approach is relevant to all cell types, it is of particular interest in the study of T cells for which classical phenotypic criteria are now viewed as insufficient for distinguishing different T cell subtypes and transitional states, and defining the changes associated with dysfunctional T cell states in autoimmunity and tumor-related exhaustion. This unit describes a protocol to generate single-cell transcriptomic libraries of human blood CD4 and CD8 T cells, and also introduces the basic bioinformatic steps to process the resulting sequence data for further computational analysis. We show how cellular subpopulations can be identified from transcriptional data, and derive characteristic gene expression signatures that distinguish these states. We believe single-cell RNA-seq is a powerful technique to study the cellular heterogeneity in complex tissues, a paradigm that will be of great value for the immune system.

摘要

了解人类T细胞群体如何利用细胞异质性、可塑性和多样性来实现广泛的功能灵活性,尤其是在发育、分化和抗原反应等动态过程中,是一个非常适合单细胞分析的核心挑战。通过对单个T细胞进行转录谱分析,对细胞状态和亚群进行无假设评估,可以识别出可能被诸如基于细胞表面抗原的FACS分选或大量表达分析等靶向方法所掩盖的关系。虽然这种方法适用于所有细胞类型,但对于T细胞研究尤为重要,因为现在认为经典的表型标准不足以区分不同的T细胞亚型和过渡状态,也无法定义与自身免疫和肿瘤相关耗竭中功能失调的T细胞状态相关的变化。本单元描述了一种生成人类血液CD4和CD8 T细胞单细胞转录组文库的方案,并介绍了处理所得序列数据以进行进一步计算分析的基本生物信息学步骤。我们展示了如何从转录数据中识别细胞亚群,并得出区分这些状态的特征性基因表达特征。我们相信单细胞RNA测序是研究复杂组织中细胞异质性的强大技术,这一模式对免疫系统将具有巨大价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验