Meyer Jan-Philip, Adumeau Pierre, Lewis Jason S, Zeglis Brian M
Department of Chemistry, Hunter College of the City University of New York , 413 East 69th Street, New York, New York 10028, United States.
Department of Radiology, Weill Cornell Medical College , 520 East 70th Street, New York, New York 10065, United States.
Bioconjug Chem. 2016 Dec 21;27(12):2791-2807. doi: 10.1021/acs.bioconjchem.6b00561. Epub 2016 Nov 22.
The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.
点击化学的出现对化学科学的几乎所有分支都产生了深远影响。放射化学以及正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和靶向放射治疗用试剂的合成尤其如此。点击连接反应的选择性、简便性、快速性和模块化使其几乎非常适合用于构建放射性示踪剂,这一过程通常涉及在水性条件下与生物分子以及不断衰变的放射性同位素打交道。在接下来的几页中,我们的目标是对点击化学与放射化学交叉领域的前10年研究进行广泛概述。讨论将集中在我们认为突出了点击化学关键优势的四个领域:(i)用于放射性标记反应的辅基的使用,(ii)放射性金属配位支架的创建,(iii)蛋白质和肽的位点特异性放射性标记,以及(iv)体内预靶向策略的开发。将特别强调四种最普遍的点击反应——铜催化的叠氮化物-炔烃环加成反应(CuAAC)、应变促进的叠氮化物-炔烃环加成反应(SPAAC)、逆电子需求狄尔斯-阿尔德反应(IEDDA)和施陶丁格连接反应——不过也会讨论不太知名的点击连接反应。最终,我们希望这篇综述不仅能起到教育读者的作用,还能成为一个跳板,激励合成化学家们和放射化学家们,在我们开启这一富有成果合作的第二个十年之际,以更具创新性和雄心勃勃的方式利用点击化学。