George Junu A, Bashir Ghada, Qureshi Mohammed M, Mohamed Yassir A, Azzi Jamil, Al-Ramadi Basel K, Fernández-Cabezudo Maria J
Department of Biochemistry, College of Medicine and Health Sciences, United Arab University , Al-Ain , UAE.
Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab University , Al-Ain , UAE.
Front Immunol. 2016 Oct 13;7:419. doi: 10.3389/fimmu.2016.00419. eCollection 2016.
Type I diabetes (T1D) results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple low-dose streptozotocin (MLD-STZ) model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI). We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.
1型糖尿病(T1D)是由T细胞介导的胰腺β细胞损伤和胰岛素分泌丧失所致。胆碱能抗炎途径代表了连接中枢神经系统和免疫系统(迷走神经)的生理联系,并具有控制促炎细胞因子释放的功能。我们使用多次低剂量链脲佐菌素(MLD-STZ)模型诱导实验性自身免疫性糖尿病,研究了通过给予对氧磷(一种高度特异性的乙酰胆碱酯酶抑制剂(AChEI))来调节高血糖发展的潜力。我们证明,用对氧磷预处理可预防链脲佐菌素处理的C57BL/6小鼠出现高血糖。这与T细胞浸润到胰岛中的减少以及β细胞结构和功能的保留相关。胰腺组织的基因表达分析显示,外周胆碱能活性增加可预防链脲佐菌素介导的胰岛素分泌丧失,这与白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和白细胞介素-17(IL-17)促炎细胞因子的减少有关。脾脏T细胞的细胞内细胞因子分析表明,抑制乙酰胆碱酯酶可使链脲佐菌素诱导的免疫反应从主要产生致病的IL-17表达Th17细胞转变为IFNγ阳性Th1细胞。与这一结论一致,在IFNγ缺陷小鼠中抑制乙酰胆碱酯酶未能预防链脲佐菌素诱导的高血糖。我们的结果为通过抑制乙酰胆碱酯酶预防小鼠T1D提供了机制证据,并提出了一种调节疾病严重程度的有前景的策略。