Suppr超能文献

先天性贫血的新兴细胞和基因疗法。

Emerging cellular and gene therapies for congenital anemias.

作者信息

Ludwig Leif S, Khajuria Rajiv K, Sankaran Vijay G

出版信息

Am J Med Genet C Semin Med Genet. 2016 Dec;172(4):332-348. doi: 10.1002/ajmg.c.31529. Epub 2016 Oct 28.

Abstract

Congenital anemias comprise a group of blood disorders characterized by a reduction in the number of peripherally circulating erythrocytes. Various genetic etiologies have been identified that affect diverse aspects of erythroid physiology and broadly fall into two main categories: impaired production or increased destruction of mature erythrocytes. Current therapies are largely focused on symptomatic treatment and are often based on transfusion of donor-derived erythrocytes and management of complications. Hematopoietic stem cell transplantation represents the only curative option currently available for the majority of congenital anemias. Recent advances in gene therapy and genome editing hold promise for the development of additional curative strategies for these blood disorders. The relative ease of access to the hematopoietic stem cell compartment, as well as the possibility of genetic manipulation ex vivo and subsequent transplantation in an autologous manner, make blood disorders among the most amenable to cellular therapies. Here we review cell-based and gene therapy approaches, and discuss the limitations and prospects of emerging avenues, including genome editing tools and the use of pluripotent stem cells, for the treatment of congenital forms of anemia. © 2016 Wiley Periodicals, Inc.

摘要

先天性贫血是一类以外周循环红细胞数量减少为特征的血液疾病。已确定多种遗传病因,这些病因影响红系生理的不同方面,大致可分为两大类:成熟红细胞生成受损或破坏增加。目前的治疗主要集中在对症治疗,通常基于输注供体来源的红细胞和并发症管理。造血干细胞移植是目前大多数先天性贫血唯一可用的治愈性选择。基因治疗和基因组编辑的最新进展为开发针对这些血液疾病的其他治愈策略带来了希望。造血干细胞区室相对容易获取,以及体外进行基因操作并随后以自体方式移植的可能性,使得血液疾病成为最适合细胞治疗的疾病之一。在此,我们综述基于细胞和基因治疗方法,并讨论包括基因组编辑工具和多能干细胞应用在内的新兴途径在治疗先天性贫血方面的局限性和前景。© 2016威利期刊公司

相似文献

1
Emerging cellular and gene therapies for congenital anemias.
Am J Med Genet C Semin Med Genet. 2016 Dec;172(4):332-348. doi: 10.1002/ajmg.c.31529. Epub 2016 Oct 28.
2
Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing.
Int J Mol Sci. 2021 Jun 10;22(12):6275. doi: 10.3390/ijms22126275.
4
Promise of gene therapy to treat sickle cell disease.
Expert Opin Biol Ther. 2018 Nov;18(11):1123-1136. doi: 10.1080/14712598.2018.1536119. Epub 2018 Oct 19.
5
Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies.
Adv Exp Med Biol. 2020;1237:17-28. doi: 10.1007/5584_2019_439.
6
Curative approaches for sickle cell disease: A review of allogeneic and autologous strategies.
Blood Cells Mol Dis. 2017 Sep;67:155-168. doi: 10.1016/j.bcmd.2017.08.014. Epub 2017 Sep 1.
7
Genome editing in pluripotent stem cells: research and therapeutic applications.
Biochem Biophys Res Commun. 2016 May 6;473(3):665-74. doi: 10.1016/j.bbrc.2016.02.113. Epub 2016 Feb 27.
8
Stem Cell Genetic Therapy for Fanconi Anemia - A New Hope.
Curr Gene Ther. 2017;16(5):309-320. doi: 10.2174/1566523217666170109111958.
9
Toward RNA Repair of Diamond Blackfan Anemia Hematopoietic Stem Cells.
Hum Gene Ther. 2016 Oct;27(10):792-801. doi: 10.1089/hum.2016.081.

引用本文的文献

1
2
Treatment strategies for glucose-6-phosphate dehydrogenase deficiency: past and future perspectives.
Trends Pharmacol Sci. 2021 Oct;42(10):829-844. doi: 10.1016/j.tips.2021.07.002. Epub 2021 Aug 10.

本文引用的文献

1
Design and Potential of Non-Integrating Lentiviral Vectors.
Biomedicines. 2014 Jan 27;2(1):14-35. doi: 10.3390/biomedicines2010014.
2
Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype.
J Clin Invest. 2016 Oct 3;126(10):3868-3878. doi: 10.1172/JCI87885. Epub 2016 Sep 6.
4
Biallelic inactivation of REV7 is associated with Fanconi anemia.
J Clin Invest. 2016 Sep 1;126(9):3580-4. doi: 10.1172/JCI88010. Epub 2016 Aug 8.
5
BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription.
Am J Hum Genet. 2016 Aug 4;99(2):253-74. doi: 10.1016/j.ajhg.2016.05.030. Epub 2016 Jul 21.
6
CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.
Mol Ther. 2016 Sep;24(9):1561-9. doi: 10.1038/mt.2016.148. Epub 2016 Jul 29.
7
Development of autologous blood cell therapies.
Exp Hematol. 2016 Oct;44(10):887-94. doi: 10.1016/j.exphem.2016.06.005. Epub 2016 Jun 21.
10
Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion.
Cell Rep. 2016 Jun 14;15(11):2550-62. doi: 10.1016/j.celrep.2016.05.027. Epub 2016 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验