Suppr超能文献

无线胶囊内镜视频中小肠出血的检测。

Detection of small colon bleeding in wireless capsule endoscopy videos.

机构信息

Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea.

出版信息

Comput Med Imaging Graph. 2016 Dec;54:16-26. doi: 10.1016/j.compmedimag.2016.09.005. Epub 2016 Sep 25.

Abstract

In the recent years, wireless capsule endoscopy (WCE) technology has played a very important role in diagnosing diseases within the gastro intestinal (GI) tract of human beings. The WCE device captures images of the GI tract of patient with a certain frame rate. Physicians examine these images in order to find abnormalities in the GI tract. This examination process is very time consuming and hectic for the physician as a WCE device captures around 60,000 images on the average. At present, there are no standards defined for the WCE image classification. Computer aided methods help reducing the burden on the physicians by automatically detecting the abnormalities in the GI tract such as small colon bleeding. In this paper, a pixel based approach to detect bleeding regions in the WCE videos by using a support vector classifier is proposed. Threshold analysis in HSV color space is performed to compute the features for training an optimal support vector machine. The HSV features of the WCE images are fed to the trained support vector classifier for classification. Also, our method includes image enhancement and edge removal in WCE images, which is done prior to classification, for robust results. The method offers high sensitivity, specificity and accuracy in terms of correctly classifying images that contain bleeding regions as compared to another contemporary method. A detailed experimental analysis is also provided for the purpose of method evaluation.

摘要

近年来,无线胶囊内窥镜(WCE)技术在诊断人类胃肠道(GI)疾病方面发挥了非常重要的作用。WCE 设备以一定的帧率捕捉患者 GI 道的图像。医生检查这些图像以寻找 GI 道中的异常。由于 WCE 设备平均拍摄约 60,000 张图像,因此该检查过程对医生来说非常耗时且繁忙。目前,WCE 图像分类尚无定义的标准。计算机辅助方法通过自动检测 GI 道中的异常(如小结肠出血)来帮助减轻医生的负担。在本文中,提出了一种基于像素的方法,通过使用支持向量分类器来检测 WCE 视频中的出血区域。在 HSV 颜色空间中进行阈值分析,以计算用于训练最优支持向量机的特征。将 WCE 图像的 HSV 特征输入到经过训练的支持向量分类器中进行分类。此外,我们的方法包括在分类之前对 WCE 图像进行图像增强和边缘去除,以获得稳健的结果。与另一种当代方法相比,该方法在正确分类包含出血区域的图像方面具有较高的灵敏度、特异性和准确性。还提供了详细的实验分析,以评估方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验