Suppr超能文献

无线胶囊内窥镜图像中信息帧的自动检测。

Automatic detection of informative frames from wireless capsule endoscopy images.

机构信息

MEXT Innovation Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

出版信息

Med Image Anal. 2010 Jun;14(3):449-70. doi: 10.1016/j.media.2009.12.001. Epub 2010 Jan 4.

Abstract

Wireless capsule endoscopy (WCE) is a new clinical technology permitting visualization of the small bowel, the most difficult segment of the digestive tract. The major drawback of this technology is the excessive amount of time required for video diagnosis. We therefore propose a method for generating smaller videos by detecting informative frames from original WCE videos. This method isolates useless frames that are highly contaminated by turbid fluids, faecal materials and/or residual foods. These materials and fluids are presented in a wide range of colors, from brown to yellow, and/or have bubble-like texture patterns. The detection scheme therefore consists of two steps: isolating (Step-1) highly contaminated non-bubbled (HCN) frames and (Step-2) significantly bubbled (SB) frames. Two color representations, viz., local color moments in Ohta space and the HSV color histogram, are attempted to characterize HCN frames, which are isolated by a support vector machine (SVM) classifier in Step-1. The rest of the frames go to Step-2, where a Gauss Laguerre transform (GLT) based multiresolution texture feature is used to characterize the bubble structures in WCE frames. GLT uses Laguerre Gauss circular harmonic functions (LG-CHFs) to decompose WCE images into multiresolution components. An automatic method of segmentation was designed to extract bubbled regions from grayscale versions of the color images based on the local absolute energies of their CHF responses. The final informative frames were detected by using a threshold on the segmented regions. An automatic procedure for selecting features based on analyzing the consistency of the energy-contrast map is also proposed. Three experiments, two of which use 14,841 and 37,100 frames from three videos and the rest uses 66,582 frames from six videos, were conducted for justifying the proposed method. The two combinations of the proposed color and texture features showed excellent average detection accuracies (86.42% and 84.45%) with the final experiment, when compared with the same color features followed by conventional Gabor-based (78.18% and 76.29%) and discrete wavelet-based (65.43% and 63.83%) texture features. Although intra-video training-testing cases are typical choices for supervised classification in Step-1, combining a suitable number of training sets using a subset of the input videos was shown to be possible. This mixing not only reduced computation costs but also produced better detection accuracies by minimizing visual-selection errors, especially when processing large numbers of WCE videos.

摘要

无线胶囊内镜(WCE)是一种新的临床技术,可使小肠可视化,小肠是消化道中最难检查的部位。该技术的主要缺点是视频诊断所需的时间过多。因此,我们提出了一种从原始 WCE 视频中检测信息帧来生成较小视频的方法。该方法可隔离受到混浊液体、粪便材料和/或残留食物高度污染的无用帧。这些材料和液体呈现出从棕色到黄色的各种颜色,并且/或者具有类似气泡的纹理图案。检测方案由两个步骤组成:隔离(步骤 1)高度污染的非气泡(HCN)帧和(步骤 2)显著气泡(SB)帧。尝试使用两种颜色表示,即 Ohta 空间中的局部颜色矩和 HSV 颜色直方图,来表征 HCN 帧,然后使用支持向量机(SVM)分类器在步骤 1 中对其进行隔离。其余的帧进入步骤 2,其中使用基于高斯拉盖尔变换(GLT)的多分辨率纹理特征来表征 WCE 帧中的气泡结构。GLT 使用拉盖尔高斯圆谐函数(LG-CHF)将 WCE 图像分解为多分辨率分量。基于其 CHF 响应的局部绝对能量,设计了一种自动的分割方法来从彩色图像的灰度版本中提取气泡区域。最后,通过在分割区域上设置阈值来检测信息帧。还提出了一种基于分析能量对比度图一致性的自动特征选择方法。进行了三个实验,其中两个实验使用了三个视频中的 14841 帧和 37100 帧,其余实验使用了六个视频中的 66582 帧,以验证所提出的方法。与相同的颜色特征结合传统的基于 Gabor 的(78.18%和 76.29%)和基于离散小波的(65.43%和 63.83%)纹理特征相比,所提出的颜色和纹理特征的两种组合在最后一个实验中表现出出色的平均检测精度(86.42%和 84.45%)。尽管在步骤 1 中进行监督分类时,通常选择视频内的训练-测试案例,但已经证明可以使用输入视频的子集组合适当数量的训练集。这种混合不仅降低了计算成本,而且通过最小化视觉选择错误,特别是在处理大量 WCE 视频时,还产生了更好的检测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验