Stevens Kristian A, Wegrzyn Jill L, Zimin Aleksey, Puiu Daniela, Crepeau Marc, Cardeno Charis, Paul Robin, Gonzalez-Ibeas Daniel, Koriabine Maxim, Holtz-Morris Ann E, Martínez-García Pedro J, Sezen Uzay U, Marçais Guillaume, Jermstad Kathy, McGuire Patrick E, Loopstra Carol A, Davis John M, Eckert Andrew, de Jong Pieter, Yorke James A, Salzberg Steven L, Neale David B, Langley Charles H
Department of Evolution and Ecology, University of California at Davis, California 95616
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut.
Genetics. 2016 Dec;204(4):1613-1626. doi: 10.1534/genetics.116.193227. Epub 2016 Oct 28.
Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome. It is the largest genome sequenced and assembled to date, and the first from the subgenus Strobus, or white pines, a group that is notable for having the largest genomes among the pines. The genome represents a unique opportunity to investigate genome "obesity" in conifers and white pines. Comparative analysis of P. lambertiana and P. taeda L. reveals new insights on the conservation, age, and diversity of the highly abundant transposable elements, the primary factor determining genome size. Like most North American white pines, the principal pathogen of P. lambertiana is white pine blister rust (Cronartium ribicola J.C. Fischer ex Raben.). Identification of candidate genes for resistance to this pathogen is of great ecological importance. The genome sequence afforded us the opportunity to make substantial progress on locating the major dominant gene for simple resistance hypersensitive response, Cr1 We describe new markers and gene annotation that are both tightly linked to Cr1 in a mapping population, and associated with Cr1 in unrelated sugar pine individuals sampled throughout the species' range, creating a solid foundation for future mapping. This genomic variation and annotated candidate genes characterized in our study of the Cr1 region are resources for future marker-assisted breeding efforts as well as for investigations of fundamental mechanisms of invasive disease and evolutionary response.
直到最近,对针叶树超大基因组的完整表征仍难以实现。糖松(Pinus lambertiana Dougl.)的二倍体基因组具有高度重复的310亿碱基对基因组。它是迄今为止测序和组装的最大基因组,也是来自Strobus亚属或白松亚属的首个基因组,该亚属以在松树中拥有最大基因组而闻名。该基因组为研究针叶树和白松中的基因组“肥胖”提供了独特机会。对糖松和火炬松(P. taeda L.)的比较分析揭示了关于高度丰富的转座元件的保守性、年代和多样性的新见解,转座元件是决定基因组大小的主要因素。与大多数北美白松一样,糖松的主要病原体是白松疱锈菌(Cronartium ribicola J.C. Fischer ex Raben.)。鉴定对这种病原体具有抗性的候选基因具有重要的生态意义。基因组序列使我们有机会在定位简单抗性过敏反应的主要显性基因Cr1方面取得重大进展。我们描述了在一个作图群体中与Cr1紧密连锁且在整个物种范围内采样的无关糖松个体中与Cr1相关的新标记和基因注释,为未来的作图奠定了坚实基础。我们在Cr1区域研究中表征的这种基因组变异和注释的候选基因是未来标记辅助育种工作以及侵袭性疾病基本机制和进化反应研究的资源。