Pei Wuhong, Huang Sunny C, Xu Lisha, Pettie Kade, Ceci María Laura, Sánchez Mario, Allende Miguel L, Burgess Shawn M
Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA.
Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
Cell Regen. 2016 Oct 20;5:3. doi: 10.1186/s13619-016-0031-5. eCollection 2016.
We are using genetics to identify genes specifically involved in hearing regeneration. In a large-scale genetic screening, we identified , a gene in the -glycosylation biosynthesis pathway whose activity negatively impacts hair cell regeneration.
We used a combination of mutant analysis in zebrafish and a hair cell regeneration assay to phenotype the loss of Mgat5a activity in zebrafish. We used pharmacological inhibition of -glycosylation by swansonine. We also used over-expression analysis by mRNA injections to demonstrate how changes in -glycosylation can alter cell signaling.
We found that was expressed in multiple tissues during zebrafish embryo development, particularly enriched in neural tissues including the brain, retina, and lateral line neuromasts. An insertional mutation and a CRISPR/Cas9-generated truncation mutation both caused an enhancement of hair cell regeneration which could be phenocopied by pharmacological inhibition with swansonine. In addition to hair cell regeneration, inhibition of the -glycosylation pathway also enhanced the regeneration of lateral line axon and caudal fins. Further analysis showed that -glycosylation altered the responsiveness of TGF-beta signaling.
The findings from this study provide experimental evidence for the involvement of -glycosylation in tissue regeneration and cell signaling.
我们正在利用遗传学方法来鉴定与听力再生特别相关的基因。在一项大规模基因筛查中,我们鉴定出了Mgat5a,它是N-糖基化生物合成途径中的一个基因,其活性对毛细胞再生产生负面影响。
我们结合斑马鱼的突变分析和毛细胞再生试验,对斑马鱼中Mgat5a活性缺失进行表型分析。我们使用了swansonine对N-糖基化进行药理学抑制。我们还通过mRNA注射进行过表达分析,以证明N-糖基化的变化如何改变细胞信号传导。
我们发现Mgat5a在斑马鱼胚胎发育过程中在多个组织中表达,尤其在包括脑、视网膜和侧线神经丘在内的神经组织中富集。一个Mgat5a插入突变和一个CRISPR/Cas9产生的截短突变均导致毛细胞再生增强,这可以通过swansonine的药理学抑制来模拟。除了毛细胞再生外,N-糖基化途径的抑制还增强了侧线轴突和尾鳍的再生。进一步分析表明,N-糖基化改变了TGF-β信号的反应性。
本研究结果为N-糖基化参与组织再生和细胞信号传导提供了实验证据。