Suppr超能文献

基于冠状动脉计算机断层扫描血管造影术的无创血流储备分数在导致缺血的冠状动脉狭窄中的诊断性能:一项荟萃分析。

Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in ischemia-causing coronary stenosis: a meta-analysis.

作者信息

Ding Aimin, Qiu Guoqing, Lin Wensheng, Hu Ling, Lu Guangliang, Long Xiang, Hong Xin, Chen Yaohua, Luo Xiaoping, Tang Qinqin, Deng Dongqin

机构信息

The Second Medical Imaging Department of the First People's Hospital of Fuzhou, Jiangxi Province, No. 421 Gan Dong Avenue, Lin Chuan District, Fuzhou, Jiangxi, 344100, China.

出版信息

Jpn J Radiol. 2016 Dec;34(12):795-808. doi: 10.1007/s11604-016-0589-4. Epub 2016 Oct 28.

Abstract

PURPOSE

Fractional flow reserve based on coronary computed tomographic angiography (CCTA; FFR) can evaluate functional severity in coronary artery disease (CAD). This study investigated the diagnostic value of FFR for determining CAD severity.

MATERIALS AND METHODS

Medline, Cochrane, EMBASE, and Google Scholar databases were searched until June 16, 2016 using the following search terms: fractional flow reserve, coronary computed tomography angiography, myocardial ischemia. Randomized controlled trials, two-arm prospective studies, and retrospective studies were included in the analysis.

RESULTS

Twenty-one studies were included with a total of 2216 subjects and 2798 vessels. FFR, sensitivity per-vessel and per-patient were ≥82% and specificity was ≥73% for diagnosis of ischemia. FFR had better diagnostic accuracy and discrimination than CCTA.

CONCLUSION

This study indicates that FFR may be a good tool for screening and diagnosing of myocardial ischemia in patients with CAD.

摘要

目的

基于冠状动脉计算机断层血管造影(CCTA)的血流储备分数(FFR)可评估冠状动脉疾病(CAD)的功能严重程度。本研究探讨了FFR对确定CAD严重程度的诊断价值。

材料与方法

使用以下检索词对Medline、Cochrane、EMBASE和谷歌学术数据库进行检索,直至2016年6月16日:血流储备分数、冠状动脉计算机断层血管造影、心肌缺血。分析纳入随机对照试验、双臂前瞻性研究和回顾性研究。

结果

纳入21项研究,共2216名受试者和2798支血管。FFR诊断缺血的血管和患者的敏感性≥82%,特异性≥73%。FFR比CCTA具有更好的诊断准确性和鉴别能力。

结论

本研究表明,FFR可能是筛查和诊断CAD患者心肌缺血的良好工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验