Suppr超能文献

宿主细胞相互作用是肽类抗生素临床应用的重大障碍。

Host Cell Interactions Are a Significant Barrier to the Clinical Utility of Peptide Antibiotics.

作者信息

Starr Charles G, He Jing, Wimley William C

机构信息

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine , New Orleans, Louisiana 70112, United States.

出版信息

ACS Chem Biol. 2016 Dec 16;11(12):3391-3399. doi: 10.1021/acschembio.6b00843. Epub 2016 Nov 7.

Abstract

Despite longstanding promise and many known examples, antimicrobial peptides (AMPs) have failed, thus far, to impact human medicine. On the basis of the physical chemistry and mechanism of action of AMPs, we hypothesized that host cell interactions could contribute to a loss of activity in vivo where host cells are highly concentrated. To test this idea, we characterized AMP activity in the presence of human red blood cells (RBC). Indeed, we show that most of a representative set of natural and synthetic AMPs tested are significantly inhibited by preincubation with host cells and would be effectively inactive at physiological cell density. We studied an example broad-spectrum AMP, ARVA (RRGWALRLVLAY), in a direct, label-free binding assay. We show that weak binding to host cells, coupled with their high concentration, is sufficient to account for a loss of useful activity, for at least some AMPs, because >1 × 10 peptides must be bound to each bacterial cell to achieve sterilization. The effect of host cell preincubation on AMP activity is comparable to that of serum protein binding. Feasible changes in host cell binding could lead to AMPs that do not lose activity through interaction with host cells. We suggest that the intentional identification of AMPs that are active in the presence of concentrated host cells can be achieved with a paradigm shift in the way AMPs are discovered.

摘要

尽管抗菌肽(AMPs)长期以来被寄予厚望且有诸多已知实例,但迄今为止,它们尚未对人类医学产生影响。基于抗菌肽的物理化学性质和作用机制,我们推测宿主细胞相互作用可能导致抗菌肽在宿主细胞高度集中的体内环境中丧失活性。为验证这一想法,我们对在人类红细胞(RBC)存在情况下的抗菌肽活性进行了表征。的确,我们发现所测试的一组代表性天然和合成抗菌肽中的大多数,在与宿主细胞预孵育后会受到显著抑制,并且在生理细胞密度下将有效失活。我们在一种直接的无标记结合试验中研究了一种广谱抗菌肽ARVA(RRGWALRLVLAY)。我们表明,与宿主细胞的弱结合以及宿主细胞的高浓度,足以解释至少某些抗菌肽有用活性的丧失,因为每个细菌细胞必须结合超过1×10个肽才能实现杀菌。宿主细胞预孵育对抗菌肽活性的影响与血清蛋白结合的影响相当。宿主细胞结合方面可行的改变可能会产生不会因与宿主细胞相互作用而丧失活性的抗菌肽。我们认为,通过改变抗菌肽的发现方式,有意鉴定在浓缩宿主细胞存在下仍具有活性的抗菌肽是可以实现的。

相似文献

1
Host Cell Interactions Are a Significant Barrier to the Clinical Utility of Peptide Antibiotics.
ACS Chem Biol. 2016 Dec 16;11(12):3391-3399. doi: 10.1021/acschembio.6b00843. Epub 2016 Nov 7.
2
Designing Hybrid Antibiotic Peptide Conjugates To Cross Bacterial Membranes.
Bioconjug Chem. 2017 Mar 15;28(3):793-804. doi: 10.1021/acs.bioconjchem.6b00725. Epub 2017 Mar 1.
4
Cell-Density Dependence of Host-Defense Peptide Activity and Selectivity in the Presence of Host Cells.
ACS Chem Biol. 2017 Jan 20;12(1):52-56. doi: 10.1021/acschembio.6b00910. Epub 2016 Dec 9.
5
Salt-resistant short antimicrobial peptides.
Biopolymers. 2016 May;106(3):345-56. doi: 10.1002/bip.22819.
6
Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria.
Nanomedicine. 2014 Apr;10(3):543-51. doi: 10.1016/j.nano.2013.11.002. Epub 2013 Nov 18.
7
Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
Biochim Biophys Acta. 2015 May;1848(5):1139-46. doi: 10.1016/j.bbamem.2015.02.001. Epub 2015 Feb 10.
9
Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis.
Biochim Biophys Acta. 2016 May;1858(5):971-9. doi: 10.1016/j.bbamem.2016.01.011. Epub 2016 Jan 20.
10
Bacterial resistance to antimicrobial peptides.
J Pept Sci. 2019 Nov;25(11):e3210. doi: 10.1002/psc.3210. Epub 2019 Oct 21.

引用本文的文献

1
Antimicrobial Peptides Can Facilitate Whole Blood Safety from Bacteria: A Proof of Concept.
ACS Infect Dis. 2025 Aug 8;11(8):2323-2330. doi: 10.1021/acsinfecdis.5c00363. Epub 2025 Jul 29.
2
Cyclization increases bactericidal activity of arginine-rich cationic cell-penetrating peptide for .
Microbiol Spectr. 2024 Sep 3;12(9):e0099724. doi: 10.1128/spectrum.00997-24. Epub 2024 Aug 6.
3
Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review.
Microorganisms. 2024 Jun 21;12(7):1259. doi: 10.3390/microorganisms12071259.
4
Development of a Selective and Stable Antimicrobial Peptide.
ACS Infect Dis. 2024 Jun 14;10(6):2151-2160. doi: 10.1021/acsinfecdis.4c00142. Epub 2024 May 7.
5
Pharmacokinetics and pharmacodynamics of antibacterial peptide NZX in Staphylococcus aureus mastitis mouse model.
Appl Microbiol Biotechnol. 2024 Mar 13;108(1):260. doi: 10.1007/s00253-024-13101-w.
6
Characterization of a New Immunosuppressive and Antimicrobial Peptide, DRS-DA2, Isolated from the Mexican Frog, .
Int J Inflam. 2024 Jan 13;2024:2205864. doi: 10.1155/2024/2205864. eCollection 2024.
7
Modeling selectivity of antimicrobial peptides: how it depends on the presence of host cells and cell density.
RSC Adv. 2023 Nov 22;13(48):34167-34182. doi: 10.1039/d3ra06030f. eCollection 2023 Nov 16.
8
Rapid Assessment of Susceptibility of Bacteria and Erythrocytes to Antimicrobial Peptides by Single-Cell Impedance Cytometry.
ACS Sens. 2023 Jul 28;8(7):2572-2582. doi: 10.1021/acssensors.3c00256. Epub 2023 Jul 8.
9
Novel Diagnostic Technologies and Therapeutic Approaches Targeting Chronic Wound Biofilms and Microbiota.
Curr Dermatol Rep. 2022 Jun;11(2):60-72. doi: 10.1007/s13671-022-00354-9. Epub 2022 Mar 25.
10
Optimization of Host Cell-Compatible, Antimicrobial Peptides Effective against Biofilms and Clinical Isolates of Drug-Resistant Bacteria.
ACS Infect Dis. 2023 Apr 14;9(4):952-965. doi: 10.1021/acsinfecdis.2c00640. Epub 2023 Mar 24.

本文引用的文献

3
Molecular mechanisms of antibiotic resistance.
Nat Rev Microbiol. 2015 Jan;13(1):42-51. doi: 10.1038/nrmicro3380. Epub 2014 Dec 1.
4
How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23.
ACS Chem Biol. 2014 Sep 19;9(9):2003-7. doi: 10.1021/cb500426r. Epub 2014 Jul 30.
5
Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16.
Antimicrob Agents Chemother. 2014 Sep;58(9):5136-45. doi: 10.1128/AAC.02955-14. Epub 2014 Jun 16.
6
The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes.
Biochim Biophys Acta. 2014 Sep;1838(9):2250-9. doi: 10.1016/j.bbamem.2014.05.013. Epub 2014 May 20.
8
Antibiotics in the clinical pipeline in 2013.
J Antibiot (Tokyo). 2013 Oct;66(10):571-91. doi: 10.1038/ja.2013.86. Epub 2013 Sep 4.
9
Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A.
Biochemistry. 2013 Sep 24;52(38):6584-94. doi: 10.1021/bi400785j. Epub 2013 Sep 10.
10
Antimicrobial peptides stage a comeback.
Nat Biotechnol. 2013 May;31(5):379-82. doi: 10.1038/nbt.2572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验