Suppr超能文献

通过比较光谱分解公式化的 GSVD 揭示的与平台无关的全基因组 DNA 拷贝数改变模式预测星形细胞瘤的生存和对治疗的反应。

Platform-Independent Genome-Wide Pattern of DNA Copy-Number Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD Formulated as a Comparative Spectral Decomposition.

机构信息

Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah, United States of America.

Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America.

出版信息

PLoS One. 2016 Oct 31;11(10):e0164546. doi: 10.1371/journal.pone.0164546. eCollection 2016.

Abstract

We use the generalized singular value decomposition (GSVD), formulated as a comparative spectral decomposition, to model patient-matched grades III and II, i.e., lower-grade astrocytoma (LGA) brain tumor and normal DNA copy-number profiles. A genome-wide tumor-exclusive pattern of DNA copy-number alterations (CNAs) is revealed, encompassed in that previously uncovered in glioblastoma (GBM), i.e., grade IV astrocytoma, where GBM-specific CNAs encode for enhanced opportunities for transformation and proliferation via growth and developmental signaling pathways in GBM relative to LGA. The GSVD separates the LGA pattern from other sources of biological and experimental variation, common to both, or exclusive to one of the tumor and normal datasets. We find, first, and computationally validate, that the LGA pattern is correlated with a patient's survival and response to treatment. Second, the GBM pattern identifies among the LGA patients a subtype, statistically indistinguishable from that among the GBM patients, where the CNA genotype is correlated with an approximately one-year survival phenotype. Third, cross-platform classification of the Affymetrix-measured LGA and GBM profiles by using the Agilent-derived GBM pattern shows that the GBM pattern is a platform-independent predictor of astrocytoma outcome. Statistically, the pattern is a better predictor (corresponding to greater median survival time difference, proportional hazard ratio, and concordance index) than the patient's age and the tumor's grade, which are the best indicators of astrocytoma currently in clinical use, and laboratory tests. The pattern is also statistically independent of these indicators, and, combined with either one, is an even better predictor of astrocytoma outcome. Recurring DNA CNAs have been observed in astrocytoma tumors' genomes for decades, however, copy-number subtypes that are predictive of patients' outcomes were not identified before. This is despite the growing number of datasets recording different aspects of the disease, and due to an existing fundamental need for mathematical frameworks that can simultaneously find similarities and dissimilarities across the datasets. This illustrates the ability of comparative spectral decompositions to find what other methods miss.

摘要

我们使用广义奇异值分解(GSVD),将其作为一种比较光谱分解,来模拟患者匹配的 3 级和 2 级,即低级别星形细胞瘤(LGA)脑肿瘤和正常 DNA 拷贝数谱。揭示了一种肿瘤特有的全基因组 DNA 拷贝数改变(CNA)模式,包含在之前发现的胶质母细胞瘤(GBM),即 4 级星形细胞瘤中,GBM 特异性 CNA 通过生长和发育信号通路编码,与 LGA 相比,为转化和增殖提供了更多机会。GSVD 将 LGA 模式与两种数据集共有的或仅存在于肿瘤或正常数据集之一的其他生物学和实验变异源分离。我们首先发现并通过计算验证,LGA 模式与患者的生存和治疗反应相关。其次,GBM 模式在 LGA 患者中识别出一种亚型,与 GBM 患者中的亚型在统计学上无法区分,其中 CNA 基因型与大约一年的生存表型相关。第三,使用基于 Agilent 的 GBM 模式对 Affymetrix 测量的 LGA 和 GBM 谱进行跨平台分类表明,GBM 模式是星形细胞瘤结果的独立于平台的预测因子。从统计学上讲,该模式是更好的预测因子(对应于更大的中位生存时间差异、比例风险比和一致性指数),优于患者年龄和肿瘤分级,这是目前临床使用的最佳星形细胞瘤指标,也是实验室检测。该模式也在统计学上独立于这些指标,并且与其中任何一个结合使用,都是预测星形细胞瘤结果的更好预测因子。几十年来,在星形细胞瘤肿瘤的基因组中已经观察到了反复出现的 DNA CNA,然而,以前没有发现可以预测患者结局的拷贝数亚型。这尽管有越来越多的数据集记录了疾病的不同方面,并且由于存在对能够同时在数据集之间找到相似性和差异性的数学框架的基本需求。这说明了比较光谱分解能够发现其他方法错过的东西的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e59/5087864/fc14e43295e8/pone.0164546.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验