Ramesh Vidya, Bayam Efil, Cernilogar Filippo M, Bonapace Ian M, Schulze Markus, Riemenschneider Markus J, Schotta Gunnar, Götz Magdalena
Institute for Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany.
Physiological Genomics, Helmholtz Center Munich, 85764 Neuherberg, Germany.
Genes Dev. 2016 Oct 1;30(19):2199-2212. doi: 10.1101/gad.284992.116.
In order to understand whether early epigenetic mechanisms instruct the long-term behavior of neural stem cells (NSCs) and their progeny, we examined Uhrf1 (ubiquitin-like PHD ring finger-1; also known as Np95), as it is highly expressed in NSCs of the developing brain and rapidly down-regulated upon differentiation. Conditional deletion of Uhrf1 in the developing cerebral cortex resulted in rather normal proliferation and neurogenesis but severe postnatal neurodegeneration. During development, deletion of Uhrf1 lead to global DNA hypomethylation with a strong activation of the intracisternal A particle (IAP) family of endogenous retroviral elements, accompanied by an increase in 5-hydroxymethylcytosine. Down-regulation of Tet enzymes rescued the IAP activation in Uhrf1 conditional knockout (cKO) cells, suggesting an antagonistic interplay between Uhrf1 and Tet on IAP regulation. As IAP up-regulation persists into postnatal stages in the Uhrf1 cKO mice, our data show the lack of means to repress IAPs in differentiating neurons that normally never express Uhrf1 The high load of viral proteins and other transcriptional deregulation ultimately led to postnatal neurodegeneration. Taken together, these data show that early developmental NSC factors can have long-term effects in neuronal differentiation and survival. Moreover, they highlight how specific the consequences of widespread changes in DNA methylation are for certain classes of retroviral elements.
为了了解早期表观遗传机制是否指导神经干细胞(NSCs)及其后代的长期行为,我们研究了泛素样植物同源结构域蛋白环指蛋白1(Uhrf1,也称为Np95),因为它在发育中的大脑的神经干细胞中高度表达,并在分化时迅速下调。在发育中的大脑皮层中条件性缺失Uhrf1会导致增殖和神经发生基本正常,但会出现严重的出生后神经变性。在发育过程中,Uhrf1的缺失导致全基因组DNA低甲基化,内源性逆转录病毒元件的脑内A颗粒(IAP)家族强烈激活,同时5-羟甲基胞嘧啶增加。Tet酶的下调挽救了Uhrf1条件性敲除(cKO)细胞中的IAP激活,表明Uhrf1和Tet在IAP调节上存在拮抗相互作用。由于IAP上调在Uhrf1 cKO小鼠的出生后阶段持续存在,我们的数据表明,在正常情况下从不表达Uhrf1的分化神经元中缺乏抑制IAP的手段。病毒蛋白的高负荷和其他转录失调最终导致出生后神经变性。综上所述,这些数据表明,早期发育的神经干细胞因子可对神经元分化和存活产生长期影响。此外,它们还突出了DNA甲基化广泛变化对某些类别的逆转录病毒元件的影响是多么具有特异性。