Suppr超能文献

精细化读取:hUHRF1 串联结构域更倾向于在 H3K9me2/3 背景下结合含有 K4me1 的组蛋白 H3 尾部。

Refined read-out: The hUHRF1 Tandem-Tudor domain prefers binding to histone H3 tails containing K4me1 in the context of H3K9me2/3.

机构信息

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.

出版信息

Protein Sci. 2023 Sep;32(9):e4760. doi: 10.1002/pro.4760.

Abstract

UHRF1 is an essential chromatin protein required for DNA methylation maintenance, mammalian development, and gene regulation. We investigated the Tandem-Tudor domain (TTD) of human UHRF1 that is known to bind H3K9me2/3 histones and is a major driver of UHRF1 localization in cells. We verified binding to H3K9me2/3 but unexpectedly discovered stronger binding to H3 peptides and mononucleosomes containing K9me2/3 with additional K4me1. We investigated the combined binding of TTD to H3K4me1-K9me2/3 versus H3K9me2/3 alone, engineered mutants with specific and differential changes of binding, and discovered a novel read-out mechanism for H3K4me1 in an H3K9me2/3 context that is based on the interaction of R207 with the H3K4me1 methyl group and on counting the H-bond capacity of H3K4. Individual TTD mutants showed up to a 10,000-fold preference for the double-modified peptides, suggesting that after a conformational change, WT TTD could exhibit similar effects. The frequent appearance of H3K4me1-K9me2 regions in human chromatin demonstrated in our TTD chromatin pull-down and ChIP-western blot data suggests that it has specific biological roles. Chromatin pull-down of TTD from HepG2 cells and full-length murine UHRF1 ChIP-seq data correlate with H3K4me1 profiles indicating that the H3K4me1-K9me2/3 interaction of TTD influences chromatin binding of full-length UHRF1. We demonstrate the H3K4me1-K9me2/3 specific binding of UHRF1-TTD to enhancers and promoters of cell-type-specific genes at the flanks of cell-type-specific transcription factor binding sites, and provided evidence supporting an H3K4me1-K9me2/3 dependent and TTD mediated downregulation of these genes by UHRF1. All these findings illustrate the important physiological function of UHRF1-TTD binding to H3K4me1-K9me2/3 double marks in a cellular context.

摘要

UHRF1 是一种必需的染色质蛋白,对于 DNA 甲基化维持、哺乳动物发育和基因调控至关重要。我们研究了人 UHRF1 的串联-Tudor 结构域(TTD),该结构域已知与 H3K9me2/3 组蛋白结合,是 UHRF1 在细胞中定位的主要驱动因素。我们验证了与 H3K9me2/3 的结合,但出人意料地发现与 H3 肽和含有 K9me2/3 的单核小体的结合更强,并且具有额外的 K4me1。我们研究了 TTD 对 H3K4me1-K9me2/3 的联合结合与单独的 H3K9me2/3 的结合,对具有特定和差异结合变化的工程突变体进行了研究,并在 H3K9me2/3 背景下发现了一种新的 H3K4me1 读取机制,该机制基于 R207 与 H3K4me1 甲基基团的相互作用,以及 H3K4 的氢键容量的计数。单个 TTD 突变体对双修饰肽的偏好高达 10000 倍,这表明 WT TTD 可能在构象改变后表现出类似的效果。我们在 TTD 染色质下拉和 ChIP-西部印迹数据中证明了人染色质中频繁出现的 H3K4me1-K9me2/3 区域,表明其具有特定的生物学作用。从 HepG2 细胞中 TTD 的染色质下拉和全长鼠 UHRF1 ChIP-seq 数据与 H3K4me1 图谱相关,表明 TTD 的 H3K4me1-K9me2/3 相互作用影响全长 UHRF1 的染色质结合。我们证明了 UHRF1-TTD 对细胞类型特异性基因侧翼的细胞类型特异性转录因子结合位点的增强子和启动子的 H3K4me1-K9me2/3 特异性结合,并提供了支持 UHRF1 通过 H3K4me1-K9me2/3 依赖性和 TTD 介导下调这些基因的证据。所有这些发现说明了 UHRF1-TTD 在细胞环境中与 H3K4me1-K9me2/3 双标记结合的重要生理功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9443/10464304/f5ac2897f7b6/PRO-32-e4760-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验