Suppr超能文献

钙传感器对CaV2.1钙通道的调节作用有助于长时程增强和空间学习。

Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.

作者信息

Nanou Evanthia, Scheuer Todd, Catterall William A

机构信息

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280.

Department of Pharmacology, University of Washington, Seattle, WA 98195-7280

出版信息

Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13209-13214. doi: 10.1073/pnas.1616206113. Epub 2016 Oct 31.

Abstract

Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca type 2.1 (Ca2.1) channels. However, the contribution of regulation of Ca2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of Ca2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of Ca2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.

摘要

许多形式的短期突触可塑性依赖于对突触前电压门控钙2.1型(Ca2.1)通道的调节。然而,Ca2.1通道调节对其他形式的神经可塑性以及学习和记忆的贡献尚不清楚。在这里,我们研究了一种具有突变(IM-AA)的小鼠,该突变破坏了钙调蛋白和相关钙传感器蛋白对Ca2.1通道的调节。令人惊讶的是,我们发现海马体中Schaffer侧支-CA1突触处突触传递的长时程增强(LTP)显著减弱,尽管这种形式的突触可塑性被认为主要是在突触后产生的。对θ波爆发刺激和100Hz强直刺激的LTP大大降低。然而,通过重复100Hz刺激或使突触后细胞去极化以防止Mg对NMDA特异性谷氨酸受体的阻断,可以产生正常水平的LTP。NMDA特异性谷氨酸受体的突触后反应与AMPA特异性谷氨酸受体的突触后反应之比降低,但在一系列刺激过程中,NMDA特异性谷氨酸受体激活产生的突触后电流逐渐增加,在1秒刺激结束时超过野生型。引人注目的是,IM-AA小鼠在长期突触可塑性方面的这些损伤以及先前记录的短期突触可塑性损伤与情境依赖性恐惧条件反射和巴恩斯圆形迷宫中空间学习和记忆的明显缺陷有关。因此,钙传感器蛋白对Ca2.1通道的调节是小鼠正常短期突触可塑性、LTP以及空间学习和记忆所必需的。

相似文献

引用本文的文献

2
Inactivation of CaV1 and CaV2 channels.CaV1和CaV2通道的失活
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202313531. Epub 2025 Jan 30.
10
A theory of synaptic transmission.突触传递的理论。
Elife. 2021 Dec 31;10:e73585. doi: 10.7554/eLife.73585.

本文引用的文献

5
Mechanisms of sharp wave initiation and ripple generation.尖波起始和涟漪产生的机制。
J Neurosci. 2014 Aug 20;34(34):11385-98. doi: 10.1523/JNEUROSCI.0867-14.2014.
6
AMPARs and synaptic plasticity: the last 25 years.AMPA 受体与突触可塑性:过去 25 年。
Neuron. 2013 Oct 30;80(3):704-17. doi: 10.1016/j.neuron.2013.10.025.
9
Synapses and memory storage.突触与记忆储存。
Cold Spring Harb Perspect Biol. 2012 Jun 1;4(6):a005751. doi: 10.1101/cshperspect.a005751.
10
Short-term forms of presynaptic plasticity.短期形式的突触前可塑性。
Curr Opin Neurobiol. 2011 Apr;21(2):269-74. doi: 10.1016/j.conb.2011.02.003. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验