Suppr超能文献

捕食者-猎物模型中的最优捕杀与生物控制

Optimal Culling and Biocontrol in a Predator-Prey Model.

作者信息

Numfor Eric, Hilker Frank M, Lenhart Suzanne

机构信息

Department of Mathematics, Augusta University, Augusta, GA, 30912, USA.

Institute of Environmental Systems Research, School of Mathematics and Computer Science, Osnabrück University, 49069, Osnabrück, Germany.

出版信息

Bull Math Biol. 2017 Jan;79(1):88-116. doi: 10.1007/s11538-016-0228-3. Epub 2016 Oct 31.

Abstract

Invasive species cause enormous problems in ecosystems around the world. Motivated by introduced feral cats that prey on bird populations and threaten to drive them extinct on remote oceanic islands, we formulate and analyze optimal control problems. Their novelty is that they involve both scalar and time-dependent controls. They represent different forms of control, namely the initial release of infected predators on the one hand and culling as well as trapping, infecting, and returning predators on the other hand. Combinations of different control methods have been proposed to complement their respective strengths in reducing predator numbers and thus protecting endangered prey. Here, we formulate and analyze an eco-epidemiological model, provide analytical results on the optimal control problem, and use a forward-backward sweep method for numerical simulations. By taking into account different ecological scenarios, initial conditions, and control durations, our model allows to gain insight how the different methods interact and in which cases they could be effective.

摘要

入侵物种在世界各地的生态系统中造成了巨大问题。受引入的捕食鸟类种群并有可能导致偏远海洋岛屿上的鸟类灭绝的野生猫科动物的驱使,我们制定并分析了最优控制问题。其新颖之处在于它们涉及标量控制和与时间相关的控制。它们代表了不同的控制形式,一方面是释放受感染的捕食者,另一方面是捕杀、诱捕、感染并放回捕食者。已经提出了不同控制方法的组合,以补充它们在减少捕食者数量从而保护濒危猎物方面的各自优势。在这里,我们制定并分析了一个生态流行病学模型,给出了最优控制问题的分析结果,并使用前向 - 后向扫描方法进行数值模拟。通过考虑不同的生态情景、初始条件和控制持续时间,我们的模型有助于深入了解不同方法如何相互作用以及它们在哪些情况下可能有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验