Suppr超能文献

基于局部空间关联指标的景观基因组模型的高性能计算。

High performance computation of landscape genomic models including local indicators of spatial association.

机构信息

Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.

School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, CF10 3AX, UK.

出版信息

Mol Ecol Resour. 2017 Sep;17(5):1072-1089. doi: 10.1111/1755-0998.12629. Epub 2016 Nov 28.

Abstract

With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing.

摘要

随着分子和地形气候数据的可用性不断增加,景观基因组学(即将景观生态学与群体基因组学相结合)面临的主要挑战包括处理大量模型和区分选择和人口过程(例如人口结构)。有几种方法可以解决后者,要么通过估计人口历史的零模型,要么通过同时推断环境和人口效应。在这里,我们介绍了 samβada,这是一种旨在研究局部适应特征的方法,特别强调了大规模遗传和环境数据集的高性能计算。samβada 通过基因型-环境关联来识别候选基因座,同时还进行多元分析,以评估许多环境预测变量的影响。这使得可以将代表人口结构的解释变量纳入模型中,以降低虚假基因型-环境关联的发生。此外,samβada 为候选基因座计算空间关联的局部指标,以提供有关相似基因型是否倾向于在空间中聚集的信息,这是个体之间可能存在亲缘关系的有用指示。为了测试这种方法的有效性,我们进行了一项模拟研究,并分析了来自乌干达牛的数据,以使用 samβada、bayenv、lfmm 和一种 F 异常值方法(arlequin 中的 FDIST 方法)检测局部适应特征,并比较它们的结果。samβada-一种可用于 Windows、Linux 和 Mac OS X 的开源软件,可在 http://lasig.epfl.ch/sambada 获得-优于其他方法,更适合全基因组序列数据处理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验