Suppr超能文献

古肌苷合成酶QueF样蛋白的晶体结构——对通过通道折叠进行脒基转移和tRNA识别的深入了解

Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold.

作者信息

Mei Xianghan, Alvarez Jonathan, Bon Ramos Adriana, Samanta Uttamkumar, Iwata-Reuyl Dirk, Swairjo Manal A

机构信息

Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182.

Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854.

出版信息

Proteins. 2017 Jan;85(1):103-116. doi: 10.1002/prot.25202. Epub 2016 Nov 20.

Abstract

The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ ) base of preQ -modified tRNA to a formamidino group. The structure, determined in the presence of preQ , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.

摘要

隧道折叠(T折叠)结构超家族已成为具有多种催化活性的通用蛋白质支架。这在tRNA queuosine和archaeosine的7-脱氮鸟苷修饰核苷的合成途径中尤为明显。在这些途径中已确认了T折叠超家族的四个成员,在此我们报告第五种酶的晶体结构;最近发现的脒基转移酶QueF样蛋白(QueF-L),负责在泉古菌门的一个亚群中tRNA D环中archaeosine生物合成的最后一步。QueF-L催化preQ修饰的tRNA的7-氰基-7-脱氮鸟嘌呤(preQ)碱基的腈基转化为甲脒基。在preQ存在下确定的结构揭示了由两个头对头相对的五聚体亚基组成的对称T折叠同十聚体,在单体间界面处有10个活性位点。结合的preQ与保守的活性位点半胱氨酸形成稳定的共价硫代亚胺键,类似于先前在腈还原酶QueF中观察到的中间体。尽管催化功能、系统发育分布不同,且序列同一性仅为19%,但这两种酶共享一个共同的preQ结合口袋,并且可能具有共同的硫代亚胺形成机制。然而,由于其十聚体的紧密扭曲,QueF-L缺乏QueF中存在的NADPH结合位点。一个大的带正电荷的分子表面和一个对接模型表明多个tRNA分子同时结合以及表面凹槽对D环的结构特异性识别。该结构揭示了腈酰胺化的机制以及在共同折叠中多种化学性质的进化。《蛋白质》2016年;85:103 - 116。© 2016威利期刊公司

相似文献

2
Evidence of a sequestered imine intermediate during reduction of nitrile to amine by the nitrile reductase QueF from .
J Biol Chem. 2018 Mar 9;293(10):3720-3733. doi: 10.1074/jbc.M117.804583. Epub 2018 Jan 16.
3
QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota.
Biomolecules. 2017 Apr 6;7(2):36. doi: 10.3390/biom7020036.
4
Discovery and characterization of an amidinotransferase involved in the modification of archaeal tRNA.
J Biol Chem. 2010 Apr 23;285(17):12706-13. doi: 10.1074/jbc.M110.102236. Epub 2010 Feb 3.
5
ArcS from Thermococcus kodakarensis transfers L-lysine to preQ nucleoside derivatives as minimum substrate RNAs.
J Biol Chem. 2024 Aug;300(8):107505. doi: 10.1016/j.jbc.2024.107505. Epub 2024 Jun 27.
6
Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli.
J Biol Chem. 2016 Dec 2;291(49):25411-25426. doi: 10.1074/jbc.M116.747014. Epub 2016 Oct 17.
8
Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2005 Oct 1;61(Pt 10):945-8. doi: 10.1107/S1744309105029246. Epub 2005 Sep 30.
9
Targeting the substrate binding site of E. coli nitrile reductase QueF by modeling, substrate and enzyme engineering.
Chemistry. 2013 May 27;19(22):7007-12. doi: 10.1002/chem.201300163. Epub 2013 Apr 17.
10
Mechanistic studies of Bacillus subtilis QueF, the nitrile oxidoreductase involved in queuosine biosynthesis.
Biochemistry. 2007 Nov 6;46(44):12844-54. doi: 10.1021/bi701265r. Epub 2007 Oct 11.

引用本文的文献

1
Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0019923. doi: 10.1128/mmbr.00199-23. Epub 2024 Feb 29.
2
Four additional natural 7-deazaguanine derivatives in phages and how to make them.
Nucleic Acids Res. 2023 Sep 22;51(17):9214-9226. doi: 10.1093/nar/gkad657.
3
7-Deazaguanine modifications protect phage DNA from host restriction systems.
Nat Commun. 2019 Nov 29;10(1):5442. doi: 10.1038/s41467-019-13384-y.
4
Identification of a radical SAM enzyme involved in the synthesis of archaeosine.
Nat Chem Biol. 2019 Dec;15(12):1148-1155. doi: 10.1038/s41589-019-0390-7. Epub 2019 Nov 18.
5
Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA.
Microorganisms. 2018 Oct 20;6(4):110. doi: 10.3390/microorganisms6040110.
6
QueF-Like, a Non-Homologous Archaeosine Synthase from the Crenarchaeota.
Biomolecules. 2017 Apr 6;7(2):36. doi: 10.3390/biom7020036.
7
Deazaguanine derivatives, examples of crosstalk between RNA and DNA modification pathways.
RNA Biol. 2017 Sep 2;14(9):1175-1184. doi: 10.1080/15476286.2016.1265200. Epub 2016 Dec 12.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes.
J Mol Biol. 2016 Feb 22;428(4):720-725. doi: 10.1016/j.jmb.2015.09.014. Epub 2015 Sep 26.
4
The cation-π interaction.
Acc Chem Res. 2013 Apr 16;46(4):885-93. doi: 10.1021/ar300265y. Epub 2012 Dec 7.
5
Stable Cu(II) and Cu(I) mononuclear intermediates in the assembly of the CuA center of Thermus thermophilus cytochrome oxidase.
J Am Chem Soc. 2012 Oct 3;134(39):16401-12. doi: 10.1021/ja307276z. Epub 2012 Sep 19.
6
Structural basis of biological nitrile reduction.
J Biol Chem. 2012 Aug 31;287(36):30560-70. doi: 10.1074/jbc.M112.388538. Epub 2012 Jul 11.
7
Diversity of archaeosine synthesis in crenarchaeota.
ACS Chem Biol. 2012 Feb 17;7(2):300-5. doi: 10.1021/cb200361w. Epub 2011 Nov 11.
8
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
10
High-resolution structure of the nitrile reductase QueF combined with molecular simulations provide insight into enzyme mechanism.
J Mol Biol. 2010 Nov 19;404(1):127-37. doi: 10.1016/j.jmb.2010.09.042. Epub 2010 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验