Mei Xianghan, Alvarez Jonathan, Bon Ramos Adriana, Samanta Uttamkumar, Iwata-Reuyl Dirk, Swairjo Manal A
Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182.
Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854.
Proteins. 2017 Jan;85(1):103-116. doi: 10.1002/prot.25202. Epub 2016 Nov 20.
The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ ) base of preQ -modified tRNA to a formamidino group. The structure, determined in the presence of preQ , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.
隧道折叠(T折叠)结构超家族已成为具有多种催化活性的通用蛋白质支架。这在tRNA queuosine和archaeosine的7-脱氮鸟苷修饰核苷的合成途径中尤为明显。在这些途径中已确认了T折叠超家族的四个成员,在此我们报告第五种酶的晶体结构;最近发现的脒基转移酶QueF样蛋白(QueF-L),负责在泉古菌门的一个亚群中tRNA D环中archaeosine生物合成的最后一步。QueF-L催化preQ修饰的tRNA的7-氰基-7-脱氮鸟嘌呤(preQ)碱基的腈基转化为甲脒基。在preQ存在下确定的结构揭示了由两个头对头相对的五聚体亚基组成的对称T折叠同十聚体,在单体间界面处有10个活性位点。结合的preQ与保守的活性位点半胱氨酸形成稳定的共价硫代亚胺键,类似于先前在腈还原酶QueF中观察到的中间体。尽管催化功能、系统发育分布不同,且序列同一性仅为19%,但这两种酶共享一个共同的preQ结合口袋,并且可能具有共同的硫代亚胺形成机制。然而,由于其十聚体的紧密扭曲,QueF-L缺乏QueF中存在的NADPH结合位点。一个大的带正电荷的分子表面和一个对接模型表明多个tRNA分子同时结合以及表面凹槽对D环的结构特异性识别。该结构揭示了腈酰胺化的机制以及在共同折叠中多种化学性质的进化。《蛋白质》2016年;85:103 - 116。© 2016威利期刊公司