Suppr超能文献

6-羧基-5,6,7,8-四氢蝶呤合酶的生化与结构研究揭示了隧道折叠超家族内催化多效性的分子基础。

Biochemical and structural studies of 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily.

作者信息

Miles Zachary D, Roberts Sue A, McCarty Reid M, Bandarian Vahe

机构信息

From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721.

From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721

出版信息

J Biol Chem. 2014 Aug 22;289(34):23641-52. doi: 10.1074/jbc.M114.555680. Epub 2014 Jul 2.

Abstract

6-Pyruvoyltetrahydropterin synthase (PTPS) homologs in both mammals and bacteria catalyze distinct reactions using the same 7,8-dihydroneopterin triphosphate substrate. The mammalian enzyme converts 7,8-dihydroneopterin triphosphate to 6-pyruvoyltetrahydropterin, whereas the bacterial enzyme catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin. To understand the basis for the differential activities we determined the crystal structure of a bacterial PTPS homolog in the presence and absence of various ligands. Comparison to mammalian structures revealed that although the active sites are nearly structurally identical, the bacterial enzyme houses a His/Asp dyad that is absent from the mammalian protein. Steady state and time-resolved kinetic analysis of the reaction catalyzed by the bacterial homolog revealed that these residues are responsible for the catalytic divergence. This study demonstrates how small variations in the active site can lead to the emergence of new functions in existing protein folds.

摘要

哺乳动物和细菌中的6-丙酮酰四氢蝶呤合酶(PTPS)同源物使用相同的7,8-二氢新蝶呤三磷酸底物催化不同的反应。哺乳动物的酶将7,8-二氢新蝶呤三磷酸转化为6-丙酮酰四氢蝶呤,而细菌的酶催化6-羧基-5,6,7,8-四氢蝶呤的形成。为了理解这种差异活性的基础,我们测定了细菌PTPS同源物在存在和不存在各种配体情况下的晶体结构。与哺乳动物结构的比较表明,尽管活性位点在结构上几乎相同,但细菌酶中存在一个哺乳动物蛋白质中不存在的组氨酸/天冬氨酸二元组。对细菌同源物催化反应的稳态和时间分辨动力学分析表明,这些残基导致了催化差异。这项研究证明了活性位点的微小变化如何导致现有蛋白质折叠中出现新功能。

相似文献

引用本文的文献

本文引用的文献

2
Biosynthesis of pyrrolopyrimidines.吡咯并嘧啶的生物合成。
Bioorg Chem. 2012 Aug;43:15-25. doi: 10.1016/j.bioorg.2012.01.001. Epub 2012 Jan 31.
3
Functional promiscuity of the COG0720 family.COG0720 家族的功能混杂性。
ACS Chem Biol. 2012 Jan 20;7(1):197-209. doi: 10.1021/cb200329f. Epub 2011 Oct 26.
5
REFMAC5 for the refinement of macromolecular crystal structures.用于大分子晶体结构精修的REFMAC5
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
6
Overview of the CCP4 suite and current developments.CCP4软件包概述及当前进展
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
8
Features and development of Coot.Coot的特点与发展
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
10
MolProbity: all-atom structure validation for macromolecular crystallography.MolProbity:用于大分子晶体学的全原子结构验证
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验