Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China.
J Am Chem Soc. 2016 Nov 16;138(45):15019-15026. doi: 10.1021/jacs.6b09155. Epub 2016 Nov 2.
Metal-organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal-organic framework Co(bdp) (bdp = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp ligand, namely, Co(F-bdp), Co(p-F-bdp), Co(o-F-bdp), Co(D-bdp), and Co(p-Me-bdp). These frameworks are isoreticular to the parent framework and exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face π-π interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH adsorption isotherms show that the pressure of the CH-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. Importantly, this work puts forth a general design strategy relevant to many other families of flexible metal-organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications.
在气体吸附时能够发生结构相转变的金属-有机骨架是用于气体存储和分离的有前途的材料,而对这些相转变发生的压力进行合成控制对于为特定应用设计此类材料至关重要。为此,通过在 bdp 配体上引入氟、氘和甲基官能团,制备了一种基于柔性金属-有机骨架 Co(bdp)(bdp=1,4-苯二吡唑)的新材料家族,即 Co(F-bdp)、Co(p-F-bdp)、Co(o-F-bdp)、Co(D-bdp)和 Co(p-Me-bdp)。这些骨架与母体骨架等结构,表现出相似的结构灵活性,随着气体压力的增加,从低孔隙率、塌陷相转变为高孔隙率、扩展相。粉末 X 射线衍射研究表明,芳环的氟化会破坏边缘到面的π-π相互作用,这些相互作用有助于在低气压下稳定塌陷相,而氘化保留了这些相互作用,甲基化则增强了它们。与这些观察结果一致,高压 CH 吸附等温线表明,配体功能化可以系统地控制 CH 诱导的骨架扩展压力,因为在塌陷相中没有边缘到面相互作用的材料在较低的 CH 压力下扩展,而具有增强的边缘到面相互作用的骨架在较高的压力下扩展。重要的是,这项工作提出了一种与许多其他柔性金属-有机骨架家族相关的通用设计策略,这将是优化这些相转变材料以用于工业应用的有力工具。