Babaei Hasan, Meihaus Katie R, Long Jeffrey R
Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.
Chem Mater. 2023 Aug 2;35(16):6220-6226. doi: 10.1021/acs.chemmater.3c00496. eCollection 2023 Aug 22.
The ability to control thermal transport is critical for the design of thermal rectifiers, logic gates, and transistors, although it remains a challenge to design materials that exhibit large changes in thermal conductivity with switching ratios suitable for practical applications. Here, we propose the use of flexible metal-organic frameworks, which can undergo significant structural changes in response to various stimuli, to achieve tunable switchable thermal conductivity. In particular, we use molecular dynamics simulations to show that the thermal conductivity of the flexible framework Fe(bdp) (bdp = 1,4-benzenedipyrazolate) becomes highly anisotropic upon transitioning from the expanded to the collapsed phase, with the conductivity decreasing by nearly an order of magnitude along the direction of compression. Our results add to a small but growing number of studies investigating metal-organic frameworks for thermal transport.
控制热传输的能力对于热整流器、逻辑门和晶体管的设计至关重要,尽管设计出热导率能在适合实际应用的开关比下发生大幅变化的材料仍然是一项挑战。在此,我们提出使用柔性金属有机框架,其可响应各种刺激而发生显著的结构变化,以实现可调谐的可切换热导率。特别是,我们使用分子动力学模拟表明,柔性框架Fe(bdp)(bdp = 1,4 - 苯二吡唑酸酯)从膨胀相转变为塌陷相时,其热导率会变得高度各向异性,沿压缩方向的热导率降低近一个数量级。我们的结果补充了少量但数量不断增加的关于研究金属有机框架用于热传输的研究。