Suppr超能文献

减数分裂重组塑造了基于系谱和标记的近亲繁殖估计的精确性。

Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding.

作者信息

Knief U, Kempenaers B, Forstmeier W

机构信息

Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany.

出版信息

Heredity (Edinb). 2017 Mar;118(3):239-248. doi: 10.1038/hdy.2016.95. Epub 2016 Nov 2.

Abstract

The proportion of an individual's genome that is identical by descent (GWIBD) can be estimated from pedigrees (inbreeding coefficient 'Pedigree F') or molecular markers ('Marker F'), but both estimators come with error. Assuming unrelated pedigree founders, Pedigree F is the expected proportion of GWIBD given a specific inbreeding constellation. Meiotic recombination introduces variation around that expectation (Mendelian noise) and related pedigree founders systematically bias Pedigree F downward. Marker F is an estimate of the actual proportion of GWIBD but it suffers from the sampling error of markers plus the error that occurs when a marker is homozygous without reflecting common ancestry (identical by state). We here show via simulation of a zebra finch and a human linkage map that three aspects of meiotic recombination (independent assortment of chromosomes, number of crossovers and their distribution along chromosomes) contribute to variation in GWIBD and thus the precision of Pedigree and Marker F. In zebra finches, where the genome contains large blocks that are rarely broken up by recombination, the Mendelian noise was large (nearly twofold larger s.d. values compared with humans) and Pedigree F thus less precise than in humans, where crossovers are distributed more uniformly along chromosomes. Effects of meiotic recombination on Marker F were reversed, such that the same number of molecular markers yielded more precise estimates of GWIBD in zebra finches than in humans. As a consequence, in species inheriting large blocks that rarely recombine, even small numbers of microsatellite markers will often be more informative about inbreeding and fitness than large pedigrees.

摘要

个体基因组中通过血缘相同(GWIBD)的比例可以从系谱(近亲繁殖系数“系谱F”)或分子标记(“标记F”)来估计,但这两种估计方法都存在误差。假设系谱创建者无亲缘关系,系谱F是给定特定近亲繁殖格局下GWIBD的预期比例。减数分裂重组会在该预期值周围引入变异(孟德尔噪声),并且有亲缘关系的系谱创建者会系统性地使系谱F向下偏差。标记F是对GWIBD实际比例的估计,但它存在标记的抽样误差,以及当一个标记是纯合子时未反映共同祖先(状态相同)而产生的误差。我们在此通过对斑胸草雀和人类连锁图谱的模拟表明,减数分裂重组的三个方面(染色体的独立分配、交叉的数量及其沿染色体的分布)会导致GWIBD的变异,从而影响系谱F和标记F的精度。在斑胸草雀中,其基因组包含很少被重组打断的大片段,孟德尔噪声很大(标准差数值几乎是人类的两倍),因此系谱F的精度低于人类,在人类中交叉更均匀地分布在染色体上。减数分裂重组对标记F的影响则相反,即相同数量的分子标记在斑胸草雀中对GWIBD的估计比在人类中更精确。因此,在继承很少重组的大片段的物种中,即使是少量的微卫星标记通常也比大的系谱在近亲繁殖和适应性方面提供更多信息。

相似文献

1
Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding.
Heredity (Edinb). 2017 Mar;118(3):239-248. doi: 10.1038/hdy.2016.95. Epub 2016 Nov 2.
2
Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation.
Mol Ecol. 2012 Jul;21(13):3237-49. doi: 10.1111/j.1365-294X.2012.05593.x. Epub 2012 May 3.
6
Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient?
Theor Popul Biol. 2016 Feb;107:4-13. doi: 10.1016/j.tpb.2015.08.006. Epub 2015 Sep 3.
7
A microsatellite-based linkage map for song sparrows (Melospiza melodia).
Mol Ecol Resour. 2015 Nov;15(6):1486-96. doi: 10.1111/1755-0998.12414. Epub 2015 May 1.
8
Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees.
Heredity (Edinb). 2015 Jul;115(1):63-72. doi: 10.1038/hdy.2015.17. Epub 2015 Mar 18.
9
How many SNPs are enough?
Mol Ecol. 2010 Apr;19(7):1265-6. doi: 10.1111/j.1365-294X.2010.04555.x.
10
Inbreeding in Japanese quail estimated by pedigree and microsatellite analyses.
J Hered. 2007 Jul-Aug;98(4):378-81. doi: 10.1093/jhered/esm034. Epub 2007 Jun 29.

引用本文的文献

1
The recombination landscape of the barn owl, from families to populations.
Genetics. 2025 Jan 8;229(1):1-50. doi: 10.1093/genetics/iyae190.
3
5
Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō.
G3 (Bethesda). 2021 Oct 19;11(11). doi: 10.1093/g3journal/jkab307.
8
Inbreeding load and inbreeding depression estimated from lifetime reproductive success in a small, dispersal-limited population.
Heredity (Edinb). 2019 Aug;123(2):192-201. doi: 10.1038/s41437-019-0197-z. Epub 2019 Feb 26.
9
Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load.
Evol Appl. 2018 Oct 23;12(2):266-279. doi: 10.1111/eva.12713. eCollection 2019 Feb.
10
Blocks of chromosomes identical by descent in a population: Models and predictions.
PLoS One. 2017 Nov 2;12(11):e0187416. doi: 10.1371/journal.pone.0187416. eCollection 2017.

本文引用的文献

1
Inbreeding depression across the lifespan in a wild mammal population.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3585-90. doi: 10.1073/pnas.1518046113. Epub 2016 Mar 15.
2
Stable recombination hotspots in birds.
Science. 2015 Nov 20;350(6263):928-32. doi: 10.1126/science.aad0843.
3
The use and abuse of genetic marker-based estimates of relatedness and inbreeding.
Ecol Evol. 2015 Aug;5(15):3140-50. doi: 10.1002/ece3.1541. Epub 2015 Jul 14.
4
Pedigrees or markers: Which are better in estimating relatedness and inbreeding coefficient?
Theor Popul Biol. 2016 Feb;107:4-13. doi: 10.1016/j.tpb.2015.08.006. Epub 2015 Sep 3.
5
Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees.
Heredity (Edinb). 2015 Jul;115(1):63-72. doi: 10.1038/hdy.2015.17. Epub 2015 Mar 18.
6
Quantifying realized inbreeding in wild and captive animal populations.
Heredity (Edinb). 2015 Apr;114(4):397-403. doi: 10.1038/hdy.2014.116. Epub 2015 Jan 14.
7
Relatedness in the post-genomic era: is it still useful?
Nat Rev Genet. 2015 Jan;16(1):33-44. doi: 10.1038/nrg3821. Epub 2014 Nov 18.
8
High-throughput sequencing reveals inbreeding depression in a natural population.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3775-80. doi: 10.1073/pnas.1318945111. Epub 2014 Feb 28.
10
Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods.
J Evol Biol. 2014 Mar;27(3):518-30. doi: 10.1111/jeb.12315. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验