Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nat Commun. 2016 Nov 2;7:13330. doi: 10.1038/ncomms13330.
Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications.
精确编辑对于生物医学研究和基因治疗至关重要。然而,同源定向基因组修饰受到基因组损伤、同源供体和内源性 DNA 修复机制的限制。在这里,我们设计了可编程胞嘧啶脱氨酶,并测试是否可以在没有靶向基因组损伤的情况下,在特定位置将胞嘧啶转化为胸腺嘧啶。我们的可编程脱氨酶在大肠杆菌中的效率为 13%,在人细胞中的效率为 2.5%,有效地将特定的胞嘧啶转化为胸腺嘧啶。然而,在靶位点 150bp 以外的位置检测到了脱靶脱氨酶。此外,全基因组测序显示,编辑后的细菌细胞没有染色体异常,但在脱氨酶固有结合位点表现出更高的全局胞嘧啶脱氨酶。因此,可编程脱氨酶代表了一种在原核生物和真核生物中具有广阔应用前景的基因组编辑工具。未来的工程需要克服脱氨酶的持续性和内在 DNA 结合亲和力,以实现更安全的治疗应用。