Suppr超能文献

一种细菌胞嘧啶脱氨酶毒素可实现无 CRISPR 的线粒体碱基编辑。

A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.

机构信息

Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2020 Jul;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub 2020 Jul 8.

Abstract

Bacterial toxins represent a vast reservoir of biochemical diversity that can be repurposed for biomedical applications. Such proteins include a group of predicted interbacterial toxins of the deaminase superfamily, members of which have found application in gene-editing techniques. Because previously described cytidine deaminases operate on single-stranded nucleic acids, their use in base editing requires the unwinding of double-stranded DNA (dsDNA)-for example by a CRISPR-Cas9 system. Base editing within mitochondrial DNA (mtDNA), however, has thus far been hindered by challenges associated with the delivery of guide RNA into the mitochondria. As a consequence, manipulation of mtDNA to date has been limited to the targeted destruction of the mitochondrial genome by designer nucleases.Here we describe an interbacterial toxin, which we name DddA, that catalyses the deamination of cytidines within dsDNA. We engineered split-DddA halves that are non-toxic and inactive until brought together on target DNA by adjacently bound programmable DNA-binding proteins. Fusions of the split-DddA halves, transcription activator-like effector array proteins, and a uracil glycosylase inhibitor resulted in RNA-free DddA-derived cytosine base editors (DdCBEs) that catalyse C•G-to-T•A conversions in human mtDNA with high target specificity and product purity. We used DdCBEs to model a disease-associated mtDNA mutation in human cells, resulting in changes in respiration rates and oxidative phosphorylation. CRISPR-free DdCBEs enable the precise manipulation of mtDNA, rather than the elimination of mtDNA copies that results from its cleavage by targeted nucleases, with broad implications for the study and potential treatment of mitochondrial disorders.

摘要

细菌毒素代表了一个巨大的生化多样性储备库,可以被重新用于生物医学应用。这些蛋白质包括一组预测的细菌间毒素脱氨酶超家族成员,其中一些已被应用于基因编辑技术。由于以前描述的胞嘧啶脱氨酶作用于单链核酸,因此它们在碱基编辑中的使用需要双链 DNA(dsDNA)的解旋 - 例如通过 CRISPR-Cas9 系统。然而,线粒体 DNA(mtDNA)内的碱基编辑迄今为止一直受到与将向导 RNA 递送到线粒体相关的挑战的阻碍。因此,迄今为止,mtDNA 的操纵仅限于通过设计的核酸酶靶向破坏线粒体基因组。在这里,我们描述了一种细菌间毒素,我们将其命名为 DddA,它可以催化 dsDNA 中胞嘧啶的脱氨作用。我们设计了分裂的 DddA 半体,这些半体在靶 DNA 上通过相邻结合的可编程 DNA 结合蛋白结合之前是非毒性和非活性的。分裂的 DddA 半体、转录激活样效应子阵列蛋白和尿嘧啶糖基化酶抑制剂的融合导致无 RNA 的 DddA 衍生的胞嘧啶碱基编辑器(DdCBE),该编辑器在人类 mtDNA 中以高靶特异性和产物纯度催化 C•G 到 T•A 的转化。我们使用 DdCBE 来模拟人类细胞中与疾病相关的 mtDNA 突变,导致呼吸速率和氧化磷酸化的变化。无 CRISPR 的 DdCBE 能够精确操纵 mtDNA,而不是通过靶向核酸酶切割导致 mtDNA 拷贝的消除,这对线粒体疾病的研究和潜在治疗具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a9/7381381/c1ce206e6fd3/nihms-1597977-f0006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验