Suppr超能文献

估算超低温下自旋极化铷原子碰撞弛豫率的边界

Estimating Bounds on Collisional Relaxation Rates of Spin-Polarized Rb Atoms at Ultracold Temperatures.

作者信息

Mies Frederick H, Williams Carl J, Julienne Paul S, Krauss Morris

机构信息

National Institute of Standards and Technology, Gaithersburg, MD 20899-0001.

出版信息

J Res Natl Inst Stand Technol. 1996 Jul-Aug;101(4):521-535. doi: 10.6028/jres.101.052.

Abstract

We present quantum scattering calculations for the collisional relaxation rate coefficient of spin-polarized Rb( = 2, = 2) atoms, which determines the loss rate of cold Rb atoms from a magnetic trap. Unlike the lighter alkali atoms, spin-polarized Rb atoms can undergo dipolar relaxation due to both the normal spin-spin dipole interaction and a second-order spin-orbit interaction with distant electronic states of the dimer. We present calculations for the second-order spin-orbit terms for both Rb and Cs. The corrections lead to a in the relaxation rate for Rb. Our primary concern is to analyze the sensitivity of the Rb trap loss to the uncertainties in the ground state molecular potentials. Since the scattering length for the Σ state is already known, the major uncertainties are associated with the Σ potential. After testing the effect of systematically modifying the short-range form of the molecular potentials over a reasonable range, and introducing our best estimate of the second-order spin-orbit interaction, we estimate that in the low temperature limit the rate coefficient for loss of Rb atoms from the = 2, = 2 state is between 0.4 × 10 cm/s and 2.4 × 10 cm/s (where this number counts two atoms lost per collision). In a pure condensate the rate coefficient would be reduced by 1/2.

摘要

我们给出了自旋极化的铷((J = 2),(m_J = 2))原子碰撞弛豫速率系数的量子散射计算结果,该系数决定了冷铷原子从磁阱中的损失率。与较轻的碱金属原子不同,自旋极化的铷原子由于正常的自旋 - 自旋偶极相互作用以及与二聚体远距离电子态的二阶自旋 - 轨道相互作用,会发生偶极弛豫。我们给出了铷和铯二阶自旋 - 轨道项的计算结果。这些修正导致铷的弛豫速率发生了( )变化。我们主要关注的是分析铷阱损失对基态分子势不确定性的敏感度。由于(\Sigma)态的散射长度已经已知,主要的不确定性与(\Sigma)势相关。在合理范围内系统地改变分子势的短程形式并引入我们对二阶自旋 - 轨道相互作用的最佳估计后,我们估计在低温极限下,铷原子从(J = 2),(m_J = 2)态损失的速率系数在(0.4×10^{}\ cm/s)到(2.4×10^{}\ cm/s)之间(这里这个数字表示每次碰撞损失两个原子)。在纯凝聚态中,速率系数将降低(1/2)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c61b/4907629/1006266ff546/j4miesf1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验