Suppr超能文献

从分子扩散率测量预测蛋白质-蛋白质相互作用的挑战

Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity.

作者信息

Sorret Lea L, DeWinter Madison A, Schwartz Daniel K, Randolph Theodore W

机构信息

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado.

出版信息

Biophys J. 2016 Nov 1;111(9):1831-1842. doi: 10.1016/j.bpj.2016.09.018.

Abstract

Dynamic light scattering can be used to measure the diffusivity of a protein within a formulation. The dependence of molecular diffusivity on protein concentration (traditionally expressed in terms of the interaction parameter k) is often used to infer whether protein-protein interactions are repulsive or attractive, resulting in solutions that are colloidally stable or unstable, respectively. However, a number of factors unrelated to intermolecular forces can also impact protein diffusion, complicating this interpretation. Here, we investigate the influence of multicomponent diffusion in a ternary protein-salt-water system on protein diffusion and k in the context of Nernst-Planck theory. This analysis demonstrates that large changes in protein diffusivity with protein concentration can result even for hard-sphere systems in the absence of protein-protein interactions. In addition, we show that dynamic light scattering measurements of diffusivity made at low ionic strength cannot be reliably used to detect protein conformational changes. We recommend comparing experimentally determined k values to theoretically predicted excluded-volume contributions, which will allow a more accurate assessment of protein-protein interactions.

摘要

动态光散射可用于测量蛋白质在制剂中的扩散系数。分子扩散系数对蛋白质浓度的依赖性(传统上用相互作用参数k表示)常被用于推断蛋白质 - 蛋白质相互作用是排斥性的还是吸引性的,分别导致胶体稳定或不稳定的溶液。然而,许多与分子间力无关的因素也会影响蛋白质扩散,使这种解释变得复杂。在这里,我们在能斯特 - 普朗克理论的背景下,研究三元蛋白质 - 盐 - 水系统中的多组分扩散对蛋白质扩散和k的影响。该分析表明,即使在不存在蛋白质 - 蛋白质相互作用的硬球系统中,蛋白质扩散系数也会随蛋白质浓度发生很大变化。此外,我们表明在低离子强度下进行的扩散系数动态光散射测量不能可靠地用于检测蛋白质构象变化。我们建议将实验测定的k值与理论预测的排除体积贡献进行比较,这将允许对蛋白质 - 蛋白质相互作用进行更准确的评估。

相似文献

1
Challenges in Predicting Protein-Protein Interactions from Measurements of Molecular Diffusivity.
Biophys J. 2016 Nov 1;111(9):1831-1842. doi: 10.1016/j.bpj.2016.09.018.
2
Dynamic light scattering application to study protein interactions in electrolyte solutions.
J Biol Phys. 2004 Jan;30(4):313-24. doi: 10.1007/s10867-004-0997-z.
4
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Mol Pharm. 2014 Jul 7;11(7):2475-89. doi: 10.1021/mp5002334. Epub 2014 Jun 18.
5
6
Prediction of colloidal stability of high concentration protein formulations.
Pharm Dev Technol. 2015 May;20(3):367-74. doi: 10.3109/10837450.2013.871032. Epub 2014 Jan 6.

引用本文的文献

1
Rapid Development of High Concentration Protein Formulation Driven by High-Throughput Technologies.
Pharm Res. 2025 Jan;42(1):151-171. doi: 10.1007/s11095-024-03801-3. Epub 2025 Jan 17.
2
Understanding the Phase Behavior of a Multistimuli-Responsive Elastin-like Polymer: Insights from Dynamic Light Scattering Analysis.
J Phys Chem B. 2024 Jun 13;128(23):5756-5765. doi: 10.1021/acs.jpcb.4c00070. Epub 2024 Jun 3.
4
The effect of mAb and excipient cryoconcentration on long-term frozen storage stability - part 2: Aggregate formation and oxidation.
Int J Pharm X. 2021 Dec 25;4:100109. doi: 10.1016/j.ijpx.2021.100109. eCollection 2022 Dec.
5
Revisit PEG-Induced Precipitation Assay for Protein Solubility Assessment of Monoclonal Antibody Formulations.
Pharm Res. 2021 Nov;38(11):1947-1960. doi: 10.1007/s11095-021-03119-4. Epub 2021 Oct 13.
9
Quantifying Protein-Protein Interactions by Molecular Counting with Mass Photometry.
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):10774-10779. doi: 10.1002/anie.202001578. Epub 2020 Apr 2.

本文引用的文献

1
[6] Second virial coefficient as predictor in protein crystal growth.
Methods Enzymol. 1997;276:100-110. doi: 10.1016/S0076-6879(97)76052-X.
2
Recent applications of light scattering measurement in the biological and biopharmaceutical sciences.
Anal Biochem. 2016 May 15;501:4-22. doi: 10.1016/j.ab.2016.02.007. Epub 2016 Feb 17.
4
Comparative study of analytical techniques for determining protein charge.
J Pharm Sci. 2015 Jul;104(7):2123-31. doi: 10.1002/jps.24454. Epub 2015 Apr 24.
5
Critical examination of the colloidal particle model of globular proteins.
Biophys J. 2015 Feb 3;108(3):724-37. doi: 10.1016/j.bpj.2014.11.3483.
6
Improving monoclonal antibody selection and engineering using measurements of colloidal protein interactions.
J Pharm Sci. 2014 Nov;103(11):3356-3363. doi: 10.1002/jps.24130. Epub 2014 Sep 10.
7
Making sense of Brownian motion: colloid characterization by dynamic light scattering.
Langmuir. 2015 Jan 13;31(1):3-12. doi: 10.1021/la501789z. Epub 2014 Jul 31.
9
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Mol Pharm. 2014 Jul 7;11(7):2475-89. doi: 10.1021/mp5002334. Epub 2014 Jun 18.
10
Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions.
J Phys Chem B. 2014 Jun 5;118(22):5817-31. doi: 10.1021/jp412301h. Epub 2014 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验