Suppr超能文献

肺放疗期间肺不张变化对组织质量和剂量的影响。

Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.

作者信息

Guy Christopher L, Weiss Elisabeth, Jan Nuzhat, Reshko Leonid B, Christensen Gary E, Hugo Geoffrey D

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298.

Department of Electrical and Computer Engineering and Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242.

出版信息

Med Phys. 2016 Nov;43(11):6109. doi: 10.1118/1.4965807.

Abstract

PURPOSE

To characterize mass and density changes of lung parenchyma in non-small cell lung cancer (NSCLC) patients following midtreatment resolution of atelectasis and to quantify the impact this large geometric change has on normal tissue dose.

METHODS

Baseline and midtreatment CT images and contours were obtained for 18 NSCLC patients with atelectasis. Patients were classified based on atelectasis volume reduction between the two scans as having either full, partial, or no resolution. Relative mass and density changes from baseline to midtreatment were calculated based on voxel intensity and volume for each lung lobe. Patients also had clinical treatment plans available which were used to assess changes in normal tissue dose constraints from baseline to midtreatment. The midtreatment image was rigidly aligned with the baseline scan in two ways: (1) bony anatomy and (2) carina. Treatment parameters (beam apertures, weights, angles, monitor units, etc.) were transferred to each image. Then, dose was recalculated. Typical IMRT dose constraints were evaluated on all images, and the changes from baseline to each midtreatment image were investigated.

RESULTS

Atelectatic lobes experienced mean (stdev) mass changes of -2.8% (36.6%), -24.4% (33.0%), and -9.2% (17.5%) and density changes of -66.0% (6.4%), -25.6% (13.6%), and -17.0% (21.1%) for full, partial, and no resolution, respectively. Means (stdev) of dose changes to spinal cord D, esophagus D, and lungs D were 0.67 (2.99), 0.99 (2.69), and 0.50 Gy (2.05 Gy), respectively, for bone alignment and 0.14 (1.80), 0.77 (2.95), and 0.06 Gy (1.71 Gy) for carina alignment. Dose increases with bone alignment up to 10.93, 7.92, and 5.69 Gy were found for maximum spinal cord, mean esophagus, and mean lung doses, respectively, with carina alignment yielding similar values. 44% and 22% of patients had at least one metric change by at least 5 Gy (dose metrics) or 5% (volume metrics) for bone and carina alignments, respectively. Investigation of GTV coverage showed mean (stdev) changes in V, D, and D of -5.5% (13.5%), 2.5% (4.2%), and 0.8% (8.9%), respectively, for bone alignment with similar results for carina alignment.

CONCLUSIONS

Resolution of atelectasis caused mass and density decreases, on average, and introduced substantial changes in normal tissue dose metrics in a subset of the patient cohort.

摘要

目的

描述非小细胞肺癌(NSCLC)患者在治疗中期肺不张消退后肺实质的质量和密度变化,并量化这种大的几何形状变化对正常组织剂量的影响。

方法

获取了18例伴有肺不张的NSCLC患者的基线和治疗中期CT图像及轮廓。根据两次扫描之间肺不张体积的减少情况,将患者分为完全消退、部分消退或未消退。基于每个肺叶的体素强度和体积,计算从基线到治疗中期的相对质量和密度变化。患者还拥有临床治疗计划,用于评估从基线到治疗中期正常组织剂量限制的变化。治疗中期图像通过两种方式与基线扫描进行刚性配准:(1)骨骼解剖结构;(2)隆突。将治疗参数(射野孔径、权重、角度、监测单位等)转移到每个图像上。然后,重新计算剂量。在所有图像上评估典型的调强放疗剂量限制,并研究从基线到每个治疗中期图像的变化。

结果

对于完全消退、部分消退和未消退的情况,肺不张肺叶的平均(标准差)质量变化分别为-2.8%(36.6%)、-24.4%(33.0%)和-9.2%(17.5%),密度变化分别为-66.0%(6.4%)、-25.6%(13.6%)和-17.0%(21.1%)。对于骨骼配准,脊髓D、食管D和肺D的剂量变化均值(标准差)分别为0.67(2.99)、0.99(2.69)和0.50 Gy(2.05 Gy),对于隆突配准分别为0.14(1.80)、0.77(2.95)和0.06 Gy(1.71 Gy)。发现对于骨骼配准,最大脊髓剂量、平均食管剂量和平均肺剂量分别增加至10.93、7.92和5.69 Gy,隆突配准产生类似的值。分别有44%和22%的患者在骨骼和隆突配准中至少有一个剂量指标变化至少5 Gy(剂量指标)或体积指标变化至少5%。对GTV覆盖情况的研究表明,对于骨骼配准,V、D和D的平均(标准差)变化分别为-5.5%(13.5%)、2.5%(4.2%)和0.8%(8.9%),隆突配准结果相似。

结论

肺不张的消退平均导致质量和密度降低,并在一部分患者队列中引起正常组织剂量指标的显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2302/5085974/0fbf1a4116f4/MPHYA6-000043-006109_1-g001.jpg

相似文献

1
Effect of atelectasis changes on tissue mass and dose during lung radiotherapy.
Med Phys. 2016 Nov;43(11):6109. doi: 10.1118/1.4965807.
3
Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study.
Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):306-13. doi: 10.1016/j.ijrobp.2010.06.025. Epub 2010 Oct 1.
5
Evaluation of adaptive treatment planning for patients with non-small cell lung cancer.
Phys Med Biol. 2017 Jun 7;62(11):4346-4360. doi: 10.1088/1361-6560/aa586f. Epub 2017 Jan 10.
8
An assessment of cone beam CT in the adaptive radiotherapy planning process for non-small-cell lung cancer patients.
Br J Radiol. 2016 Jun;89(1062):20150492. doi: 10.1259/bjr.20150492. Epub 2016 Apr 7.
9
Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer.
Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86. doi: 10.1016/j.ijrobp.2003.10.044.
10
Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2011 Mar 1;79(3):901-8. doi: 10.1016/j.ijrobp.2010.04.050. Epub 2010 Aug 12.

引用本文的文献

1
Deformable Image Registration Uncertainty-Encompassing Dose Accumulation for Adaptive Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Jul 15;122(4):818-826. doi: 10.1016/j.ijrobp.2025.04.004. Epub 2025 Apr 14.
2
Diagnosis of lung cancer by flexible fiberoptic bronchoscopy: a descriptive study.
Rom J Morphol Embryol. 2022 Apr-Jun;63(2):369-381. doi: 10.47162/RJME.63.2.08.
4
Ventilation in patients with stage IIIB or above lung cancer.
Ann Transl Med. 2021 Nov;9(22):1647. doi: 10.21037/atm-21-2203.
5
Development of a novel detection method for changes in lung conditions during radiotherapy using a temporal subtraction technique.
Phys Eng Sci Med. 2021 Dec;44(4):1341-1350. doi: 10.1007/s13246-021-01070-7. Epub 2021 Oct 26.
6
Geometric and Dosimetric Changes in Tumor and Lung Tissue During Radiotherapy for Lung Cancer With Atelectasis.
Front Oncol. 2021 Jul 22;11:690278. doi: 10.3389/fonc.2021.690278. eCollection 2021.
7
Adaptive radiotherapy in locally advanced esophageal cancer with atelectasis: a case report.
BMC Cancer. 2020 Jan 6;20(1):21. doi: 10.1186/s12885-019-6505-4.
8
Evaluation of Image Registration Accuracy for Tumor and Organs at Risk in the Thorax for Compliance With TG 132 Recommendations.
Adv Radiat Oncol. 2018 Sep 7;4(1):177-185. doi: 10.1016/j.adro.2018.08.023. eCollection 2019 Jan-Mar.
10
Resolution of atelectasis during radiochemotherapy of lung cancer with serious implications for further treatment. A case report.
Clin Transl Radiat Oncol. 2017 Dec 8;9:1-4. doi: 10.1016/j.ctro.2017.12.001. eCollection 2018 Feb.

本文引用的文献

2
Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy.
Radiother Oncol. 2014 Dec;113(3):392-7. doi: 10.1016/j.radonc.2014.10.009. Epub 2014 Nov 6.
4
Towards local progression estimation of pulmonary emphysema using CT.
Med Phys. 2014 Feb;41(2):021905. doi: 10.1118/1.4851535.
5
Adaptive radiotherapy of lung cancer patients with pleural effusion or atelectasis.
Radiother Oncol. 2014 Mar;110(3):517-22. doi: 10.1016/j.radonc.2013.10.013. Epub 2013 Oct 31.
8
Adaptive radiotherapy for locally advanced non-small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control.
Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):e275-82. doi: 10.1016/j.ijrobp.2011.01.067. Epub 2011 Apr 15.
9
Localization accuracy of the clinical target volume during image-guided radiotherapy of lung cancer.
Int J Radiat Oncol Biol Phys. 2011 Oct 1;81(2):560-7. doi: 10.1016/j.ijrobp.2010.11.032. Epub 2011 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验