Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco , San Francisco, California, United States.
Centro de Investigación Lilly, SA , Avenida de la Industria 30, 28108 Alcobendas, Spain.
J Phys Chem B. 2017 Apr 20;121(15):3493-3501. doi: 10.1021/acs.jpcb.6b09358. Epub 2016 Dec 1.
Characterization of interactions between proteins and other molecules is crucial for understanding the mechanisms of action of biological systems and, thus, drug discovery. An increasingly useful approach to mapping these interactions is measurement of hydrogen/deuterium exchange (HDX) using mass spectrometry (HDX-MS), which measures the time-resolved deuterium incorporation of peptides obtained by enzymatic digestion of the protein. Comparison of exchange rates between apo- and ligand-bound conditions results in a mapping of the differential HDX (ΔHDX) of the ligand. Residue-level analysis of these data, however, must account for experimental error, sparseness, and ambiguity due to overlapping peptides. Here, we propose a Bayesian method consisting of a forward model, noise model, prior probabilities, and a Monte Carlo sampling scheme. This method exploits a residue-resolved exponential rate model of HDX-MS data obtained from all peptides simultaneously, and explicitly models experimental error. The result is the best possible estimate of ΔHDX magnitude and significance for each residue given the data. We demonstrate the method by revealing richer structural interpretation of ΔHDX data on two nuclear receptors: vitamin D-receptor (VDR) and retinoic acid receptor gamma (RORγ). The method is implemented in HDX Workbench and as a standalone module of the open source Integrative Modeling Platform.
蛋白质与其他分子之间的相互作用的特征对于理解生物系统的作用机制至关重要,因此对于药物发现也至关重要。一种越来越有用的绘制这些相互作用的方法是使用质谱法(HDX-MS)测量氢/氘交换(HDX),该方法测量通过蛋白质酶解获得的肽的时间分辨氘掺入。比较apo 和配体结合条件下的交换率,导致配体的差异 HDX(ΔHDX)的映射。然而,这些数据的残基水平分析必须考虑到实验误差、稀疏性和由于重叠肽引起的歧义。在这里,我们提出了一种贝叶斯方法,该方法由正向模型、噪声模型、先验概率和蒙特卡罗采样方案组成。该方法利用从所有肽同时获得的 HDX-MS 数据的残基分辨指数速率模型,并明确模拟实验误差。结果是根据数据为每个残基提供 ΔHDX 幅度和显著性的最佳可能估计。我们通过揭示两个核受体(维生素 D 受体(VDR)和视黄酸受体γ(RORγ))上 ΔHDX 数据的更丰富的结构解释来证明该方法。该方法在 HDX Workbench 中实现,并作为开源综合建模平台的独立模块。