Suppr超能文献

基于神经网络的一类互联非线性系统的自适应分散容错控制。

Neural-Network-Based Adaptive Decentralized Fault-Tolerant Control for a Class of Interconnected Nonlinear Systems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jan;29(1):144-155. doi: 10.1109/TNNLS.2016.2616906. Epub 2016 Oct 26.

Abstract

This paper is concerned with the adaptive decentralized fault-tolerant tracking control problem for a class of uncertain interconnected nonlinear systems with unknown strong interconnections. An algebraic graph theory result is introduced to address the considered interconnections. In addition, to achieve the desirable tracking performance, a neural-network-based robust adaptive decentralized fault-tolerant control (FTC) scheme is given to compensate the actuator faults and system uncertainties. Furthermore, via the Lyapunov analysis method, it is proven that all the signals of the resulting closed-loop system are semiglobally bounded, and the tracking errors of each subsystem exponentially converge to a compact set, whose radius is adjustable by choosing different controller design parameters. Finally, the effectiveness and advantages of the proposed FTC approach are illustrated with two simulated examples.

摘要

这篇论文研究了一类具有未知强互联的不确定互联非线性系统的自适应分散容错跟踪控制问题。引入了代数图论的结果来处理所考虑的互联。此外,为了实现期望的跟踪性能,提出了一种基于神经网络的鲁棒自适应分散容错控制(FTC)方案,以补偿执行器故障和系统不确定性。此外,通过 Lyapunov 分析方法,证明了闭环系统的所有信号都是半全局有界的,并且每个子系统的跟踪误差指数收敛到一个可调节的紧致集,其半径可以通过选择不同的控制器设计参数来确定。最后,通过两个仿真示例说明了所提出的 FTC 方法的有效性和优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验