McDowell Gary, Rajadurai Suvithan, Levin Michael
Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). doi: 10.1098/rstb.2015.0409.
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
左右(LR)不对称性的一致性是跨门生物体型规划的一个基本方面,而左右侧性错误构成了人类出生缺陷的一个重要类别。其分子基础最初是作为左右侧基因表达的一个顺序途径被发现的,该途径控制着心脏和内脏器官的定位。最近的数据在两个重要方面修正了这一图景。首先,手性的物理起源已被确定;细胞骨架动力学是单细胞行为不对称性和LR轴模式形成的基础。其次,该途径不是线性的:改变上游不对称基因正常侧性的早期干扰不一定会导致下游基因侧性或器官位置的缺陷。因此,LR途径是生物学两个迷人方面的一个独特例子:物理学与遗传学在建立大规模解剖结构中的相互作用,以及随着时间推移纠正分子和解剖学错误的调节性(形状稳态)途径。在这里,我们回顾了不对称性的各个方面,从其细胞内、细胞质起源到LR控制电路最近发现的尽管关键“决定因素”基因发生反转仍能实现正确基因表达和形态的能力。我们在非洲爪蟾中提供了关于驱动不对称性的细胞骨架保守元件的新功能数据,并与该领域先前发表的结果进行了比较分析。我们的新观察和荟萃分析表明,尽管上游调控基因表达异常,但胚胎仍能逐渐使转录级联和解剖学结果正常化。因此,LR模式形成可以作为一个范例,说明亚细胞物理学和基因表达如何合作以实现身体轴的发育稳健性。本文是主题为“左右不对称性中的挑衅性问题”的特刊的一部分。