Suppr超能文献

SPURS 算法用于将非规则采样信号重采样到笛卡尔网格上。

The SPURS Algorithm for Resampling an Irregularly Sampled Signal onto a Cartesian Grid.

出版信息

IEEE Trans Med Imaging. 2017 Feb;36(2):628-640. doi: 10.1109/TMI.2016.2623711. Epub 2016 Nov 1.

Abstract

We present an algorithm for resampling a function from its values on a non-Cartesian grid onto a Cartesian grid. This problem arises in many applications such as MRI, CT, radio astronomy and geophysics. Our algorithm, termed SParse Uniform ReSampling (SPURS), employs methods from modern sampling theory to achieve a small approximation error while maintaining low computational cost. The given non-Cartesian samples are projected onto a selected intermediate subspace, spanned by integer translations of a compactly supported kernel function. This produces a sparse system of equations describing the relation between the nonuniformly spaced samples and a vector of coefficients representing the projection of the signal onto the chosen subspace. This sparse system of equations can be solved efficiently using available sparse equation solvers. The result is then projected onto the subspace in which the sampled signal is known to reside. The second projection is implemented efficiently using a digital linear shift invariant (LSI) filter and produces uniformly spaced values of the signal on a Cartesian grid. The method can be iterated to improve the reconstruction results. We then apply SPURS to reconstruction of MRI data from nonuniformly spaced k-space samples. Simulations demonstrate that SPURS outperforms other reconstruction methods while maintaining a similar computational complexity over a range of sampling densities and trajectories as well as various input SNR levels.

摘要

我们提出了一种从非笛卡尔网格上的函数值对笛卡尔网格进行重采样的算法。这个问题在许多应用中都会出现,如 MRI、CT、射电天文学和地球物理学。我们的算法称为稀疏均匀重采样(SPURS),它采用了现代采样理论中的方法,在保持低计算成本的同时,实现了较小的逼近误差。给定的非笛卡尔样本被投影到一个选定的中间子空间上,该子空间由紧凑支撑核函数的整数平移生成。这产生了一个稀疏的方程组,描述了非均匀间隔样本与表示信号在所选子空间上的投影的系数向量之间的关系。这个稀疏的方程组可以使用现有的稀疏方程求解器有效地求解。然后,将结果投影到采样信号已知存在的子空间上。第二个投影使用数字线性时不变(LSI)滤波器有效地实现,并且在笛卡尔网格上产生信号的均匀间隔值。该方法可以迭代以改善重建结果。然后,我们将 SPURS 应用于从非均匀间隔 k 空间样本重建 MRI 数据。模拟结果表明,SPURS 在保持类似计算复杂度的同时,在各种采样密度和轨迹以及各种输入 SNR 水平下,都优于其他重建方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验