基于约束低秩表示的鲁棒子空间聚类
Constrained Low-Rank Representation for Robust Subspace Clustering.
出版信息
IEEE Trans Cybern. 2017 Dec;47(12):4534-4546. doi: 10.1109/TCYB.2016.2618852. Epub 2016 Oct 31.
Subspace clustering aims to partition the data points drawn from a union of subspaces according to their underlying subspaces. For accurate semisupervised subspace clustering, all data that have a must-link constraint or the same label should be grouped into the same underlying subspace. However, this is not guaranteed in existing approaches. Moreover, these approaches require additional parameters for incorporating supervision information. In this paper, we propose a constrained low-rank representation (CLRR) for robust semisupervised subspace clustering, based on a novel constraint matrix constructed in this paper. While seeking the low-rank representation of data, CLRR explicitly incorporates supervision information as hard constraints for enhancing the discriminating power of optimal representation. This strategy can be further extended to other state-of-the-art methods, such as sparse subspace clustering. We theoretically prove that the optimal representation matrix has both a block-diagonal structure with clean data and a semisupervised grouping effect with noisy data. We have also developed an efficient optimization algorithm based on alternating the direction method of multipliers for CLRR. Our experimental results have demonstrated that CLRR outperforms existing methods.
子空间聚类旨在根据数据点的基础子空间将来自子空间并集的数据点进行分区。对于准确的半监督子空间聚类,所有具有强制链接约束或相同标签的数据都应被分组到相同的基础子空间中。然而,现有的方法并不能保证这一点。此外,这些方法还需要额外的参数来合并监督信息。在本文中,我们提出了一种基于本文构造的新约束矩阵的约束低秩表示(CLRR),用于稳健的半监督子空间聚类。在寻求数据的低秩表示时,CLRR 明确地将监督信息作为硬约束纳入,以增强最优表示的判别能力。这种策略可以进一步扩展到其他最先进的方法,如稀疏子空间聚类。我们从理论上证明了最优表示矩阵既有干净数据的块对角结构,又有噪声数据的半监督分组效果。我们还开发了一种基于交替方向乘子法的高效优化算法,用于 CLRR。我们的实验结果表明,CLRR 优于现有的方法。