Suppr超能文献

基于张量 LRR 和稀疏编码的子空间聚类。

Tensor LRR and Sparse Coding-Based Subspace Clustering.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Oct;27(10):2120-33. doi: 10.1109/TNNLS.2016.2553155. Epub 2016 Apr 27.

Abstract

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.

摘要

子空间聚类将来自几个线性子空间的并集的一组样本聚集成簇,使得同一簇中的样本来自同一线性子空间。在现有的大多数子空间聚类工作中,聚类是基于特征信息构建的,而原始空间结构中的样本相关性则被简单地忽略了。此外,原始的高维特征向量包含噪声/冗余信息,并且时间复杂度随维度数量呈指数增长。为了解决这些问题,我们提出了一种基于张量低秩表示 (TLRR) 和稀疏编码的 (TLRRSC) 子空间聚类方法,该方法同时考虑了特征信息和空间结构。TLRR 沿着所有空间方向在原始空间结构上寻求最低秩表示。稀疏编码沿特征空间学习字典,以便每个样本都可以由学到的字典的几个原子来表示。用于谱聚类的相似性矩阵是从空间和特征空间的联合相似性中构建的。TLRRSC 可以很好地捕获数据的全局结构和内在特征信息,并从损坏的数据中提供稳健的子空间分割。在合成和真实数据集上的实验结果表明,TLRRSC 优于几种现有的最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验