Chen Yuqi, Guo Wensheng, Kotanko Peter, Usvyat Len, Wang Yuedong
Int J Biostat. 2016 Nov 1;12(2). doi: 10.1515/ijb-2016-0002.
Modeling hospitalization is complicated because the follow-up time can be censored due to death. In this paper, we propose a shared frailty joint model for survival time and hospitalization. A random effect semi-parametric proportional hazard model is assumed for the survival time and conditional on the follow-up time, hospital admissions or total length of stay is modeled by a generalized linear model with a nonparametric offset function of the follow-up time. We assume that the hospitalization and the survival time are correlated through a latent subject-specific random frailty. The proposed model can be implemented using existing software such as SAS Proc NLMIXED. We demonstrate the feasibility through simulations. We apply our methods to study hospital admissions and total length of stay in a cohort of patients on hemodialysis. We identify age, albumin, neutrophil to lymphocyte ratio (NLR) and vintage as significant risk factors for mortality, and age, gender, race, albumin, NLR, pre-dialysis systolic blood pressure (preSBP), interdialytic weight gain (IDWG) and equilibrated Kt/V (eKt/V) as significant risk factors for both hospital admissions and total length of stay. In addition, hospitalization admissions is positively associated with vintage.
对住院情况进行建模很复杂,因为随访时间可能因死亡而被截尾。在本文中,我们提出了一种用于生存时间和住院情况的共享脆弱性联合模型。对于生存时间,我们假设采用随机效应半参数比例风险模型,并且在随访时间的条件下,通过具有随访时间非参数偏移函数的广义线性模型对住院次数或住院总时长进行建模。我们假设住院情况和生存时间通过潜在的个体特异性随机脆弱性相关联。所提出的模型可以使用诸如SAS Proc NLMIXED等现有软件来实现。我们通过模拟证明了其可行性。我们将我们的方法应用于研究一组血液透析患者的住院次数和住院总时长。我们确定年龄、白蛋白、中性粒细胞与淋巴细胞比值(NLR)和透析龄是死亡的显著风险因素,而年龄、性别、种族、白蛋白、NLR、透析前收缩压(preSBP)、透析间期体重增加(IDWG)和标准化Kt/V(eKt/V)是住院次数和住院总时长的显著风险因素。此外,住院次数与透析龄呈正相关。