Suppr超能文献

金属离子生物传感器的系统设计:一种多目标优化方法。

Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach.

作者信息

Hsu Chih-Yuan, Chen Bor-Sen

机构信息

Lab of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

出版信息

PLoS One. 2016 Nov 10;11(11):e0165911. doi: 10.1371/journal.pone.0165911. eCollection 2016.

Abstract

With the recent industrial expansion, heavy metals and other pollutants have increasingly contaminated our living surroundings. Heavy metals, being non-degradable, tend to accumulate in the food chain, resulting in potentially damaging toxicity to organisms. Thus, techniques to detect metal ions have gradually begun to receive attention. Recent progress in research on synthetic biology offers an alternative means for metal ion detection via the help of promoter elements derived from microorganisms. To make the design easier, it is necessary to develop a systemic design method for evaluating and selecting adequate components to achieve a desired detection performance. A multi-objective (MO) H2/H∞ performance criterion is derived here for design specifications of a metal ion biosensor to achieve the H2 optimal matching of a desired input/output (I/O) response and simultaneous H∞ optimal filtering of intrinsic parameter fluctuations and external cellular noise. According to the two design specifications, a Takagi-Sugeno (T-S) fuzzy model is employed to interpolate several local linear stochastic systems to approximate the nonlinear stochastic metal ion biosensor system so that the multi-objective H2/H∞ design of the metal ion biosensor can be solved by an associated linear matrix inequality (LMI)-constrained multi-objective (MO) design problem. The analysis and design of a metal ion biosensor with optimal I/O response matching and optimal noise filtering ability then can be achieved by solving the multi-objective problem under a set of LMIs. Moreover, a multi-objective evolutionary algorithm (MOEA)-based library search method is employed to find adequate components from corresponding libraries to solve LMI-constrained MO H2/H∞ design problems. It is a useful tool for the design of metal ion biosensors, particularly regarding the tradeoffs between the design factors under consideration.

摘要

随着近期的工业扩张,重金属和其他污染物日益污染我们的生活环境。重金属不可降解,往往会在食物链中积累,对生物体造成潜在的毒性损害。因此,检测金属离子的技术逐渐开始受到关注。合成生物学研究的最新进展提供了一种借助源自微生物的启动子元件来检测金属离子的替代方法。为了使设计更简便,有必要开发一种系统设计方法,用于评估和选择合适的组件以实现所需的检测性能。本文推导了一种多目标(MO)H2/H∞性能准则,用于金属离子生物传感器的设计规范,以实现所需输入/输出(I/O)响应的H2最优匹配以及对固有参数波动和外部细胞噪声的同时H∞最优滤波。根据这两个设计规范,采用Takagi-Sugeno(T-S)模糊模型对多个局部线性随机系统进行插值,以近似非线性随机金属离子生物传感器系统,从而可通过相关的线性矩阵不等式(LMI)约束多目标(MO)设计问题来解决金属离子生物传感器的多目标H2/H∞设计。通过在一组LMI下求解多目标问题,进而可以实现具有最优I/O响应匹配和最优噪声滤波能力的金属离子生物传感器的分析与设计。此外,采用基于多目标进化算法(MOEA)的库搜索方法从相应库中寻找合适的组件,以解决受LMI约束的MO H2/H∞设计问题。它是设计金属离子生物传感器的有用工具,特别是在考虑设计因素之间的权衡方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f4/5104392/b158f70894fb/pone.0165911.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验