文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Robust design of biological circuits: evolutionary systems biology approach.

作者信息

Chen Bor-Sen, Hsu Chih-Yuan, Liou Jing-Jia

机构信息

Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

J Biomed Biotechnol. 2011;2011:304236. doi: 10.1155/2011/304236. Epub 2011 Dec 7.


DOI:10.1155/2011/304236
PMID:22187523
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3237015/
Abstract

Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/48af9ed7284b/JBB2011-304236.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/c6481ff2e641/JBB2011-304236.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/034fca6ffb80/JBB2011-304236.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/e186b9e46df9/JBB2011-304236.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/b47c35799e9a/JBB2011-304236.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/f7ec14123daa/JBB2011-304236.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/fd51d6525b1e/JBB2011-304236.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/0dff3ae62c57/JBB2011-304236.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/bbcb476deb84/JBB2011-304236.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/48af9ed7284b/JBB2011-304236.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/c6481ff2e641/JBB2011-304236.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/034fca6ffb80/JBB2011-304236.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/e186b9e46df9/JBB2011-304236.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/b47c35799e9a/JBB2011-304236.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/f7ec14123daa/JBB2011-304236.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/fd51d6525b1e/JBB2011-304236.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/0dff3ae62c57/JBB2011-304236.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/bbcb476deb84/JBB2011-304236.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa44/3237015/48af9ed7284b/JBB2011-304236.009.jpg

相似文献

[1]
Robust design of biological circuits: evolutionary systems biology approach.

J Biomed Biotechnol. 2011

[2]
Robust model matching design methodology for a stochastic synthetic gene network.

Math Biosci. 2011-1-6

[3]
Automatic design of digital synthetic gene circuits.

PLoS Comput Biol. 2011-2-17

[4]
Multiobjective H2/H∞ synthetic gene network design based on promoter libraries.

Math Biosci. 2011-7-19

[5]
Design of synthetic biological logic circuits based on evolutionary algorithm.

IET Syst Biol. 2013-8-1

[6]
A systematic design method for robust synthetic biology to satisfy design specifications.

BMC Syst Biol. 2009-6-30

[7]
Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

BMC Syst Biol. 2012-10-26

[8]
Automated Design of Synthetic Cell Classifier Circuits Using a Two-Step Optimization Strategy.

Cell Syst. 2017-2-8

[9]
A Statistical Approach Reveals Designs for the Most Robust Stochastic Gene Oscillators.

ACS Synth Biol. 2016-6-17

[10]
Modelling and Control of Gene Regulatory Networks for Perturbation Mitigation.

IEEE/ACM Trans Comput Biol Bioinform. 2018-1-11

引用本文的文献

[1]
GCAD: a Computational Framework for Mammalian Genetic Program Computer-Aided Design.

bioRxiv. 2025-8-23

[2]
Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology.

Cell Mol Life Sci. 2023-5-8

[3]
Mathematical Modelling in Plant Synthetic Biology.

Methods Mol Biol. 2022

[4]
Systematic Design of a Metal Ion Biosensor: A Multi-Objective Optimization Approach.

PLoS One. 2016-11-10

[5]
Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods.

BMC Med Genomics. 2015

[6]
Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

Evol Bioinform Online. 2015-7-19

[7]
Period doubling induced by thermal noise amplification in genetic circuits.

Sci Rep. 2014-11-18

[8]
Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

Cells. 2013-10-11

[9]
A computational pipeline for identifying kinetic motifs to aid in the design and improvement of synthetic gene circuits.

BMC Bioinformatics. 2013-10-22

[10]
The stochastic evolutionary game for a population of biological networks under natural selection.

Evol Bioinform Online. 2014-2-16

本文引用的文献

[1]
GA-based Design Algorithms for the Robust Synthetic Genetic Oscillators with Prescribed Amplitude, Period and Phase.

Gene Regul Syst Bio. 2010-5-24

[2]
A systematic design method for robust synthetic biology to satisfy design specifications.

BMC Syst Biol. 2009-6-30

[3]
Synthetic gene networks that count.

Science. 2009-5-29

[4]
Underlying principles of natural selection in network evolution: systems biology approach.

Evol Bioinform Online. 2007-9-26

[5]
Robust synthetic biology design: stochastic game theory approach.

Bioinformatics. 2009-7-15

[6]
Diversity-based, model-guided construction of synthetic gene networks with predicted functions.

Nat Biotechnol. 2009-5

[7]
A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises.

BMC Syst Biol. 2008-11-27

[8]
Refinement and standardization of synthetic biological parts and devices.

Nat Biotechnol. 2008-7

[9]
Engineering BioBrick vectors from BioBrick parts.

J Biol Eng. 2008-4-14

[10]
Combinatorial promoter design for engineering noisy gene expression.

Proc Natl Acad Sci U S A. 2007-7-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索