Suppr超能文献

肺结节的诊断:标准数字化图像与反转数字化图像及传统胸部X线片的比较

The diagnosis of pulmonary nodules: comparison between standard and inverse digitized images and conventional chest radiographs.

作者信息

Sheline M E, Brikman I, Epstein D M, Mezrich J L, Kundel H L, Arenson R L

机构信息

Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia 19104.

出版信息

AJR Am J Roentgenol. 1989 Feb;152(2):261-3. doi: 10.2214/ajr.152.2.261.

Abstract

We compared plain chest radiographs, standard (bones white) digitized images, and inverse-intensity (bones black) images to determine their ability to identify pathologically confirmed malignant pulmonary nodules. The images were digitized by using a photo-optical laser scanner and were displayed on a 1024 x 1024 x 8 bit system capable of operator-controlled magnification (2x or 4x) and nonlinear (logarithmic/exponential) contrast transformation in both standard and inverse-intensity modes. Receiver-operator curve analysis was used to study the detection performance of six observers who viewed 40 images obtained in 15 normal subjects and 25 abnormal subjects. There was no statistically significant difference in the area under the ROC curve between the standard digital images and the plain chest radiographs. However, ROC areas were significantly greater (p less than or equal to .05) for inverse-intensity digital images when compared with either standard-intensity digital images or plain chest radiographs. These results suggest that inverse-intensity images may have some advantages in the detection of pulmonary nodules.

摘要

我们比较了胸部平片、标准(骨骼白色)数字化图像和反相强度(骨骼黑色)图像,以确定它们识别经病理证实的恶性肺结节的能力。图像通过光电激光扫描仪进行数字化处理,并显示在一个1024×1024×8位的系统上,该系统能够在标准和反相强度模式下进行操作员控制的放大(2倍或4倍)以及非线性(对数/指数)对比度变换。采用接受者操作特征曲线分析来研究六名观察者对15名正常受试者和25名异常受试者获得的40幅图像的检测性能。标准数字图像和胸部平片之间的ROC曲线下面积没有统计学上的显著差异。然而,与标准强度数字图像或胸部平片相比,反相强度数字图像的ROC面积显著更大(p≤0.05)。这些结果表明,反相强度图像在肺结节检测中可能具有一些优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验