Varandas Katherine C, Irannejad Roshanak, von Zastrow Mark
Program in Cell Biology, University of California, San Francisco, 16(th) Street, San Francisco, CA 94158, USA.
Department of Psychiatry, UCSF School of Medicine, 16(th) Street, San Francisco, CA 94158, USA.
Curr Biol. 2016 Dec 5;26(23):3129-3142. doi: 10.1016/j.cub.2016.09.052. Epub 2016 Nov 10.
Retromer mediates sequence-directed cargo exit from endosomes to support both endosome-to-Golgi (retrograde transport) and endosome-to-plasma membrane (recycling) itineraries. It is not known whether these trafficking functions require cargos to exit endosomes separately via distinct transport intermediates or whether the same retromer-coated carriers can support both itineraries. We addressed this question by comparing human Wntless (Wls) and β2 adrenergic receptor (β2AR), which require retromer physiologically for retrograde transport and recycling, respectively. We show here by direct visualization in living cells that both cargos transit primarily the same endosomes and exit via shared transport vesicles generated from a retromer-coated endosome domain. While both Wls and β2AR clearly localize to the same retromer-coated endosome domains, Wls is consistently enriched more strongly. This enrichment difference is determined by distinct motifs present in the cytoplasmic tail of each cargo, with Wls using tandem Φ-X-[L/M] motifs and β2AR using a PDZ motif. Exchanging these determinants reverses the enrichment phenotype of each cargo but does not change cargo itinerary, verifying the multifunctional nature of retromer and implying that additional sorting must occur downstream. Quantitative differences in the degree of cargo enrichment instead underlie a form of kinetic sorting that impacts the rate of cargo delivery via both itineraries and determines the ability of β2AR to activate its cognate G protein transducer locally from endosomes. We propose that mammalian retromer forms a multifunctional membrane coat that supports shared cargo exit for divergent trafficking itineraries and regulates signaling from endosomes.
逆转录酶复合物介导货物从内体进行序列导向的输出,以支持内体到高尔基体(逆行运输)和内体到质膜(再循环)的行程。目前尚不清楚这些运输功能是否需要货物通过不同的运输中间体分别从内体输出,或者相同的逆转录酶复合物包被的载体是否可以支持这两种行程。我们通过比较人类无翅型MMTV整合位点家族成员(Wls)和β2肾上腺素能受体(β2AR)来解决这个问题,它们在生理上分别需要逆转录酶复合物进行逆行运输和再循环。我们通过在活细胞中的直接可视化显示,这两种货物主要通过相同的内体转运,并通过从逆转录酶复合物包被的内体结构域产生的共享运输囊泡输出。虽然Wls和β2AR都明显定位于相同的逆转录酶复合物包被的内体结构域,但Wls始终富集得更强。这种富集差异由每种货物细胞质尾部存在的不同基序决定,Wls使用串联的Φ-X-[L/M]基序,而β2AR使用PDZ基序。交换这些决定因素会逆转每种货物的富集表型,但不会改变货物行程,这证实了逆转录酶复合物的多功能性质,并意味着必须在下游进行额外的分选。货物富集程度的定量差异反而构成了一种动力学分选形式,它影响通过两种行程的货物递送速率,并决定β2AR从内体局部激活其同源G蛋白转导子的能力。我们提出,哺乳动物逆转录酶复合物形成一种多功能膜包被,支持不同运输行程的共享货物输出,并调节来自内体的信号传导。