Suppr超能文献

内体定位协调空间选择性 GPCR 信号转导。

Endosome positioning coordinates spatially selective GPCR signaling.

机构信息

Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.

Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.

出版信息

Nat Chem Biol. 2024 Feb;20(2):151-161. doi: 10.1038/s41589-023-01390-7. Epub 2023 Jul 27.

Abstract

G-protein-coupled receptors (GPCRs) can initiate unique functional responses depending on the subcellular site of activation. Efforts to uncover the mechanistic basis of compartmentalized GPCR signaling have concentrated on the biochemical aspect of this regulation. Here we assess the biophysical positioning of receptor-containing endosomes as an alternative salient mechanism. We devise a strategy to rapidly and selectively redistribute receptor-containing endosomes 'on command' in intact cells without perturbing their biochemical composition. Next, we present two complementary optical readouts that enable robust measurements of bulk- and gene-specific GPCR/cyclic AMP (cAMP)-dependent transcriptional signaling with single-cell resolution. With these, we establish that disruption of native endosome positioning inhibits the initiation of the endosome-dependent transcriptional responses. Finally, we demonstrate a prominent mechanistic role of PDE-mediated cAMP hydrolysis and local protein kinase A activity in this process. Our study, therefore, illuminates a new mechanism regulating GPCR function by identifying endosome positioning as the principal mediator of spatially selective receptor signaling.

摘要

G 蛋白偶联受体(GPCRs)可以根据激活的亚细胞位置启动独特的功能反应。为了揭示分隔的 GPCR 信号转导的机制基础,人们集中研究了这种调节的生化方面。在这里,我们评估了受体含有内体的生物物理定位作为替代显著机制。我们设计了一种策略,在不干扰其生化组成的情况下,快速且选择性地按需重新分配完整细胞中含有受体的内体。接下来,我们提出了两种互补的光学读数方法,能够以单细胞分辨率实现对批量和基因特异性 GPCR/环 AMP(cAMP)依赖性转录信号的稳健测量。有了这些,我们确定了破坏天然内体定位会抑制内体依赖性转录反应的起始。最后,我们证明了 PDE 介导的 cAMP 水解和局部蛋白激酶 A 活性在该过程中的主要作用。因此,我们的研究通过确定内体定位作为空间选择性受体信号转导的主要介质,阐明了一种调节 GPCR 功能的新机制。

相似文献

1
Endosome positioning coordinates spatially selective GPCR signaling.
Nat Chem Biol. 2024 Feb;20(2):151-161. doi: 10.1038/s41589-023-01390-7. Epub 2023 Jul 27.
2
Integration of GPCR Signaling and Sorting from Very Early Endosomes via Opposing APPL1 Mechanisms.
Cell Rep. 2017 Dec 5;21(10):2855-2867. doi: 10.1016/j.celrep.2017.11.023.
3
G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.
J Biol Chem. 2015 Mar 13;290(11):6689-96. doi: 10.1074/jbc.R114.617951. Epub 2015 Jan 20.
4
Endosomal generation of cAMP in GPCR signaling.
Nat Chem Biol. 2014 Sep;10(9):700-6. doi: 10.1038/nchembio.1611.
5
Structural insights into emergent signaling modes of G protein-coupled receptors.
J Biol Chem. 2020 Aug 14;295(33):11626-11642. doi: 10.1074/jbc.REV120.009348. Epub 2020 Jun 22.
6
Ubiquitin-driven G protein-coupled receptor inflammatory signaling at the endosome.
Am J Physiol Cell Physiol. 2024 Jun 1;326(6):C1605-C1610. doi: 10.1152/ajpcell.00161.2024. Epub 2024 Apr 22.
7
Endosomal cAMP production broadly impacts the cellular phosphoproteome.
J Biol Chem. 2021 Jul;297(1):100907. doi: 10.1016/j.jbc.2021.100907. Epub 2021 Jun 22.
8
Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis.
Nat Chem Biol. 2014 Dec;10(12):1061-5. doi: 10.1038/nchembio.1665. Epub 2014 Nov 2.
9
Conformational biosensors reveal GPCR signalling from endosomes.
Nature. 2013 Mar 28;495(7442):534-8. doi: 10.1038/nature12000. Epub 2013 Mar 20.
10
Distinct G protein-coupled receptor recycling pathways allow spatial control of downstream G protein signaling.
J Cell Biol. 2016 Sep 26;214(7):797-806. doi: 10.1083/jcb.201512068. Epub 2016 Sep 19.

引用本文的文献

1
GPCR endocytosis rewires neuronal gene expression and cellular architecture.
bioRxiv. 2025 Aug 27:2025.08.26.672159. doi: 10.1101/2025.08.26.672159.
2
Endocytosis drives active cAMP signal discrimination among natively co-expressed GPCRs.
bioRxiv. 2025 Jun 27:2025.02.24.639927. doi: 10.1101/2025.02.24.639927.
4
Chemical biology approaches to resolve the subcellular GPCR signaling landscape.
Nat Chem Biol. 2025 Jun 2. doi: 10.1038/s41589-025-01928-x.
5
Deciphering complexity of GPCR signaling and modulation: implications and perspectives for drug discovery.
Clin Sci (Lond). 2025 May 20;139(10):CS20245182. doi: 10.1042/CS20245182.
6
Intersection of GPCR trafficking and cAMP signaling at endomembranes.
J Cell Biol. 2025 Apr 7;224(4). doi: 10.1083/jcb.202409027. Epub 2025 Mar 25.
7
Quantitative approaches for studying G protein-coupled receptor signalling and pharmacology.
J Cell Sci. 2025 Jan 1;138(1). doi: 10.1242/jcs.263434. Epub 2025 Jan 15.
8
Development of endosome-related gene signature for the prediction of prognosis and therapeutic response in breast cancer.
Medicine (Baltimore). 2025 Jan 10;104(2):e41230. doi: 10.1097/MD.0000000000041230.
9
Spatiotemporal control of kinases and the biomolecular tools to trace activity.
J Biol Chem. 2024 Nov;300(11):107846. doi: 10.1016/j.jbc.2024.107846. Epub 2024 Oct 1.
10
SNX27:Retromer:ESCPE-1-mediated early endosomal tubulation impacts cytomegalovirus replication.
Front Cell Infect Microbiol. 2024 Sep 18;14:1399761. doi: 10.3389/fcimb.2024.1399761. eCollection 2024.

本文引用的文献

1
Non-canonical β-adrenergic activation of ERK at endosomes.
Nature. 2022 Nov;611(7934):173-179. doi: 10.1038/s41586-022-05343-3. Epub 2022 Oct 26.
2
Lysosomal positioning diseases: beyond substrate storage.
Open Biol. 2022 Oct;12(10):220155. doi: 10.1098/rsob.220155. Epub 2022 Oct 26.
3
Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling.
Cell. 2022 Mar 31;185(7):1130-1142.e11. doi: 10.1016/j.cell.2022.02.011. Epub 2022 Mar 15.
4
Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation.
Sci Signal. 2021 Oct 5;14(703):eabc5944. doi: 10.1126/scisignal.abc5944.
5
Endosomal cAMP production broadly impacts the cellular phosphoproteome.
J Biol Chem. 2021 Jul;297(1):100907. doi: 10.1016/j.jbc.2021.100907. Epub 2021 Jun 22.
6
Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA network.
Nat Chem Biol. 2021 May;17(5):558-566. doi: 10.1038/s41589-021-00747-0. Epub 2021 Mar 1.
7
A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling.
PLoS Genet. 2020 Oct 14;16(10):e1009103. doi: 10.1371/journal.pgen.1009103. eCollection 2020 Oct.
8
An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice.
Nat Chem Biol. 2021 Jan;17(1):39-46. doi: 10.1038/s41589-020-00660-y. Epub 2020 Sep 28.
9
Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling.
Cell. 2020 Sep 17;182(6):1531-1544.e15. doi: 10.1016/j.cell.2020.07.043. Epub 2020 Aug 25.
10
Optical Mapping of cAMP Signaling at the Nanometer Scale.
Cell. 2020 Sep 17;182(6):1519-1530.e17. doi: 10.1016/j.cell.2020.07.035. Epub 2020 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验