Suppr超能文献

拟南芥根的高分辨率表达图谱揭示了可变剪接和长链非编码RNA调控。

High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation.

作者信息

Li Song, Yamada Masashi, Han Xinwei, Ohler Uwe, Benfey Philip N

机构信息

Department of Biology and HHMI, Duke University, Durham, NC 27708, USA.

Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27710, USA; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.

出版信息

Dev Cell. 2016 Nov 21;39(4):508-522. doi: 10.1016/j.devcel.2016.10.012. Epub 2016 Nov 10.

Abstract

The extent to which alternative splicing and long intergenic noncoding RNAs (lincRNAs) contribute to the specialized functions of cells within an organ is poorly understood. We generated a comprehensive dataset of gene expression from individual cell types of the Arabidopsis root. Comparisons across cell types revealed that alternative splicing tends to remove parts of coding regions from a longer, major isoform, providing evidence for a progressive mechanism of splicing. Cell-type-specific intron retention suggested a possible origin for this common form of alternative splicing. Coordinated alternative splicing across developmental stages pointed to a role in regulating differentiation. Consistent with this hypothesis, distinct isoforms of a transcription factor were shown to control developmental transitions. lincRNAs were generally lowly expressed at the level of individual cell types, but co-expression clusters provided clues as to their function. Our results highlight insights gained from analysis of expression at the level of individual cell types.

摘要

可变剪接和长链基因间非编码RNA(lincRNA)对器官内细胞特定功能的贡献程度尚不清楚。我们生成了拟南芥根中单个细胞类型的基因表达综合数据集。跨细胞类型的比较表明,可变剪接倾向于从更长的主要异构体中去除部分编码区域,为剪接的渐进机制提供了证据。细胞类型特异性内含子保留提示了这种常见可变剪接形式的可能起源。跨发育阶段的协调可变剪接表明其在调节分化中起作用。与这一假设一致,一种转录因子的不同异构体被证明可控制发育转变。lincRNA在单个细胞类型水平上通常表达较低,但共表达簇为其功能提供了线索。我们的结果突出了从单个细胞类型水平的表达分析中获得的见解。

相似文献

1
High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation.
Dev Cell. 2016 Nov 21;39(4):508-522. doi: 10.1016/j.devcel.2016.10.012. Epub 2016 Nov 10.
2
Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis.
Plant Cell. 2012 Nov;24(11):4333-45. doi: 10.1105/tpc.112.102855. Epub 2012 Nov 6.
3
Mapping gene activity of Arabidopsis root hairs.
Genome Biol. 2013 Jun 25;14(6):R67. doi: 10.1186/gb-2013-14-6-r67.
4
Functions of long intergenic non-coding (linc) RNAs in plants.
J Plant Res. 2017 Jan;130(1):67-73. doi: 10.1007/s10265-016-0894-0. Epub 2016 Dec 20.
5
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
Genome Res. 2010 Jan;20(1):45-58. doi: 10.1101/gr.093302.109. Epub 2009 Oct 26.
7
Identification of Novel lincRNA and Co-Expression Network Analysis Using RNA-Sequencing Data in Plants.
Methods Mol Biol. 2019;1933:207-221. doi: 10.1007/978-1-4939-9045-0_12.
8
Post-transcriptional regulation in root development.
Wiley Interdiscip Rev RNA. 2014 Sep-Oct;5(5):679-96. doi: 10.1002/wrna.1239. Epub 2014 May 14.
9
Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
Plant J. 2012 May;70(3):421-31. doi: 10.1111/j.1365-313X.2011.04882.x. Epub 2012 Jan 16.

引用本文的文献

1
HHO5: A key orchestrator of dose-dependent nitrogen signaling pathways in Arabidopsis.
bioRxiv. 2025 Aug 2:2025.07.31.667803. doi: 10.1101/2025.07.31.667803.
2
Validation of Fiber-Dominant Expressing Gene Promoters in .
Plants (Basel). 2025 Jun 25;14(13):1948. doi: 10.3390/plants14131948.
4
From peptides to patterning: Redox control of the master regulator PLT2 in Arabidopsis roots.
Plant Physiol. 2025 Jul 3;198(3). doi: 10.1093/plphys/kiaf264.
6
Peptides and Reactive Oxygen Species Regulate Root Development.
Int J Mol Sci. 2025 Mar 25;26(7):2995. doi: 10.3390/ijms26072995.
9
Importance of pre-mRNA splicing and its study tools in plants.
Adv Biotechnol (Singap). 2024 Feb 8;2(1):4. doi: 10.1007/s44307-024-00009-9.
10
Deciphering the molecular logic of WOX5 function in the root stem cell organizer.
EMBO J. 2025 Jan;44(1):281-303. doi: 10.1038/s44318-024-00302-2. Epub 2024 Nov 18.

本文引用的文献

2
Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity.
Genome Res. 2015 Jul;25(7):995-1007. doi: 10.1101/gr.186585.114. Epub 2015 May 1.
4
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat Biotechnol. 2015 Mar;33(3):290-5. doi: 10.1038/nbt.3122. Epub 2015 Feb 18.
5
Comparative analysis of the transcriptome across distant species.
Nature. 2014 Aug 28;512(7515):445-8. doi: 10.1038/nature13424.
6
Diversity and dynamics of the Drosophila transcriptome.
Nature. 2014 Aug 28;512(7515):393-9. doi: 10.1038/nature12962.
7
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
Bioinformatics. 2014 Apr 1;30(7):923-30. doi: 10.1093/bioinformatics/btt656. Epub 2013 Nov 13.
9
An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions.
Nat Genet. 2013 Aug;45(8):891-8. doi: 10.1038/ng.2684. Epub 2013 Jun 30.
10
Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene.
Genome Biol. 2013 Jul 1;14(7):R70. doi: 10.1186/gb-2013-14-7-r70.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验