Suppr超能文献

多目标追踪过程中大脑网络激活与共激活的年龄相关差异。

Age-related differences in brain network activation and co-activation during multiple object tracking.

作者信息

Dørum Erlend S, Alnæs Dag, Kaufmann Tobias, Richard Geneviève, Lund Martina J, Tønnesen Siren, Sneve Markus H, Mathiesen Nina C, Rustan Øyvind G, Gjertsen Øivind, Vatn Sigurd, Fure Brynjar, Andreassen Ole A, Nordvik Jan Egil, Westlye Lars T

机构信息

Sunnaas Rehabilitation Hospital HT Nesodden Norway; NORMENT KG Jebsen Centre for Psychosis Research Division of Mental Health and Addiction Oslo University Hospital & Institute of Clinical Medicine University of Oslo Oslo Norway; Department of Psychology University of Oslo Oslo Norway.

NORMENT KG Jebsen Centre for Psychosis Research Division of Mental Health and Addiction Oslo University Hospital & Institute of Clinical Medicine University of Oslo Oslo Norway.

出版信息

Brain Behav. 2016 Sep 7;6(11):e00533. doi: 10.1002/brb3.533. eCollection 2016 Nov.

Abstract

INTRODUCTION

Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age.

METHODS

We obtained fMRI data during MOT at two load conditions from a group of younger ( = 25, mean age = 24.4 ± 5.1 years) and older ( = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations.

RESULTS

Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults.

CONCLUSION

Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.

摘要

引言

多目标跟踪(MOT)是一种用于测量持续注意力的强大范式。尽管先前的功能磁共振成像(fMRI)研究已经描绘了与跟踪相关的大脑激活模式,并记录了衰老过程中跟踪性能的下降,但衰老对MOT期间大脑激活的影响尚未得到明确描述。特别是,不同脑网络的任务相关激活是否相关,以及脑网络内激活之间的这种协调是否显示出年龄差异尚不清楚。

方法

我们在两种负荷条件下对一组年轻(n = 25,平均年龄 = 24.4 ± 5.1岁)和年长(n = 21,平均年龄 = 64.7 ± 7.4岁)的健康成年人进行MOT时获取了fMRI数据。我们使用体素级和独立成分分析相结合的方法,研究了脑网络激活中与年龄相关的差异。为了探究各种脑网络的激活在多大程度上反映独特和共同的机制,我们评估了脑网络激活之间的相关性。

结果

行为表现显示MOT准确性存在与年龄相关的下降。体素和脑网络水平分析均表明,老年组背侧注意网络(DAN)的负荷依赖性激活降低,默认模式网络(DMN)的负荷依赖性失活降低。最后,我们发现年轻成年人的DAN内和DMN成分内的任务相关激活之间的相关性更强,而老年成年人的DAN和DMN成分之间的相关性更强。

结论

以MOT作为测量注意力表现的手段,我们证明了与年龄相关的注意力下降。网络水平分析揭示了与年龄相关的网络募集变化,相对于年轻成年人,老年人的DAN激活减少,DMN失活减少。我们发现年轻成年人的DMN内和DAN成分内的相关性更强,而老年成年人的DAN和DMN成分之间的相关性更强,这表明在注意力处理过程中,协调的网络水平激活存在与年龄相关的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b0c/5102637/abcdc93cf930/BRB3-6-e00533-g001.jpg

相似文献

1
Age-related differences in brain network activation and co-activation during multiple object tracking.
Brain Behav. 2016 Sep 7;6(11):e00533. doi: 10.1002/brb3.533. eCollection 2016 Nov.
3
Age differences in the neural correlates of distraction regulation: A network interaction approach.
Neuroimage. 2016 Oct 1;139:231-239. doi: 10.1016/j.neuroimage.2016.06.036. Epub 2016 Jun 20.
4
Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.
Neuropsychologia. 2018 Jun;114:50-64. doi: 10.1016/j.neuropsychologia.2018.04.013. Epub 2018 Apr 12.
5
Direct Cortical Recordings Suggest Temporal Order of Task-Evoked Responses in Human Dorsal Attention and Default Networks.
J Neurosci. 2018 Nov 28;38(48):10305-10313. doi: 10.1523/JNEUROSCI.0079-18.2018. Epub 2018 Oct 12.
6
Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks.
Neurobiol Aging. 2016 May;41:159-172. doi: 10.1016/j.neurobiolaging.2016.02.020. Epub 2016 Mar 3.
7
Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.
Epilepsy Behav. 2018 Nov;88:81-86. doi: 10.1016/j.yebeh.2018.06.045. Epub 2018 Sep 19.
8
Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations.
Nat Commun. 2020 Jan 16;11(1):325. doi: 10.1038/s41467-019-14166-2.
9
Divergent functional connectivity during attentional processing in Lewy body dementia and Alzheimer's disease.
Cortex. 2017 Jul;92:8-18. doi: 10.1016/j.cortex.2017.02.016. Epub 2017 Mar 18.
10
The left frontal cortex supports reserve in aging by enhancing functional network efficiency.
Alzheimers Res Ther. 2018 Mar 6;10(1):28. doi: 10.1186/s13195-018-0358-y.

引用本文的文献

2
Broadscale dampening of uncertainty adjustment in the aging brain.
Nat Commun. 2024 Dec 23;15(1):10717. doi: 10.1038/s41467-024-55416-2.
3
Effects of acute exercise fatigue on the spatiotemporal dynamics of resting-state large-scale brain networks.
Front Neurosci. 2023 Jan 20;17:986368. doi: 10.3389/fnins.2023.986368. eCollection 2023.
5
Inhibition of emotions in healthy aging: age-related differences in brain network connectivity.
Brain Behav. 2021 May;11(5):e02052. doi: 10.1002/brb3.2052. Epub 2021 Feb 4.
7
Functional brain network modeling in sub-acute stroke patients and healthy controls during rest and continuous attentive tracking.
Heliyon. 2020 Sep 15;6(9):e04854. doi: 10.1016/j.heliyon.2020.e04854. eCollection 2020 Sep.
9
Pupillometry as an Objective Measure of Sustained Attention in Young and Older Listeners.
Trends Hear. 2019 Jan-Dec;23:2331216519887815. doi: 10.1177/2331216519887815.

本文引用的文献

1
Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging.
Neurosci Biobehav Rev. 2015 Oct;57:156-74. doi: 10.1016/j.neubiorev.2015.08.013. Epub 2015 Aug 28.
2
Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.
Cereb Cortex. 2016 Sep;26(9):3851-65. doi: 10.1093/cercor/bhv190. Epub 2015 Aug 26.
3
On the existence of a generalized non-specific task-dependent network.
Front Hum Neurosci. 2015 Aug 6;9:430. doi: 10.3389/fnhum.2015.00430. eCollection 2015.
4
Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
Neuroimage. 2015 May 15;112:278-287. doi: 10.1016/j.neuroimage.2015.02.063. Epub 2015 Mar 11.
5
Attentional load modulates large-scale functional brain connectivity beyond the core attention networks.
Neuroimage. 2015 Apr 1;109:260-72. doi: 10.1016/j.neuroimage.2015.01.026. Epub 2015 Jan 13.
6
Decreased segregation of brain systems across the healthy adult lifespan.
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):E4997-5006. doi: 10.1073/pnas.1415122111. Epub 2014 Nov 3.
7
Human cognitive aging: corriger la fortune?
Science. 2014 Oct 31;346(6209):572-8. doi: 10.1126/science.1254403.
8
9
Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
Neuroimage. 2014 Apr 15;90:449-68. doi: 10.1016/j.neuroimage.2013.11.046. Epub 2014 Jan 2.
10
The structure of cognition: attentional episodes in mind and brain.
Neuron. 2013 Oct 2;80(1):35-50. doi: 10.1016/j.neuron.2013.09.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验