Suppr超能文献

通过CRISPR/Cas9介导的同源性非依赖靶向整合进行体内基因组编辑。

In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.

作者信息

Suzuki Keiichiro, Tsunekawa Yuji, Hernandez-Benitez Reyna, Wu Jun, Zhu Jie, Kim Euiseok J, Hatanaka Fumiyuki, Yamamoto Mako, Araoka Toshikazu, Li Zhe, Kurita Masakazu, Hishida Tomoaki, Li Mo, Aizawa Emi, Guo Shicheng, Chen Song, Goebl April, Soligalla Rupa Devi, Qu Jing, Jiang Tingshuai, Fu Xin, Jafari Maryam, Esteban Concepcion Rodriguez, Berggren W Travis, Lajara Jeronimo, Nuñez-Delicado Estrella, Guillen Pedro, Campistol Josep M, Matsuzaki Fumio, Liu Guang-Hui, Magistretti Pierre, Zhang Kun, Callaway Edward M, Zhang Kang, Belmonte Juan Carlos Izpisua

机构信息

Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.

Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.

出版信息

Nature. 2016 Dec 1;540(7631):144-149. doi: 10.1038/nature20565. Epub 2016 Nov 16.

Abstract

Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.

摘要

通过工程核酸酶进行靶向基因组编辑是生物医学研究中一个令人兴奋的领域,具有临床应用潜力。尽管该领域取得了快速进展,但体内靶向转基因整合仍然不可行,因为目前的工具效率低下,尤其是对于构成大多数成年组织的非分裂细胞。这为揭示基本生物学原理和开发针对广泛遗传疾病的治疗方法带来了障碍。基于成簇规律间隔短回文重复序列/Cas9(CRISPR/Cas9)技术,我们在此设计了一种不依赖同源性的靶向整合(HITI)策略,该策略能够在体外的分裂细胞和非分裂细胞中,更重要的是在体内(例如,在出生后哺乳动物的神经元中)实现强大的DNA敲入。作为其治疗潜力概念验证,我们使用视网膜色素变性视网膜退化疾病的大鼠模型证明了HITI在改善视觉功能方面的功效。本文提出的HITI方法为基础研究和靶向基因治疗开辟了新途径。

相似文献

1
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.
Nature. 2016 Dec 1;540(7631):144-149. doi: 10.1038/nature20565. Epub 2016 Nov 16.
2
In vivo genome editing via the HITI method as a tool for gene therapy.
J Hum Genet. 2018 Feb;63(2):157-164. doi: 10.1038/s10038-017-0352-4. Epub 2017 Nov 13.
3
Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.
Mol Ther. 2021 Apr 7;29(4):1611-1624. doi: 10.1016/j.ymthe.2020.12.010. Epub 2020 Dec 10.
5
CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases.
Mol Biotechnol. 2021 Sep;63(9):768-779. doi: 10.1007/s12033-021-00345-4. Epub 2021 May 31.
6
CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
J Cell Physiol. 2019 Aug;234(8):12267-12277. doi: 10.1002/jcp.27972. Epub 2019 Jan 30.
7
In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
Mol Ther. 2018 Jul 5;26(7):1818-1827. doi: 10.1016/j.ymthe.2018.04.017. Epub 2018 Apr 25.
8
CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
FASEB J. 2018 Sep;32(9):5132-5142. doi: 10.1096/fj.201800077RR. Epub 2018 May 29.
9

引用本文的文献

2
Advances in large-scale DNA engineering with the CRISPR system.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01530-0.
4
CRISPR-mediated optogene expression from a cell-specific endogenous promoter in retinal ON-bipolar cells to restore vision.
Front Drug Deliv. 2023 Mar 27;3:934394. doi: 10.3389/fddev.2023.934394. eCollection 2023.
6
production of CAR T cell: Opportunities and challenges.
Genes Dis. 2025 Mar 25;12(6):101612. doi: 10.1016/j.gendis.2025.101612. eCollection 2025 Nov.
7
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
10
Off-target effects in CRISPR-Cas genome editing for human therapeutics: Progress and challenges.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102636. doi: 10.1016/j.omtn.2025.102636. eCollection 2025 Sep 9.

本文引用的文献

1
AAV-Mediated Gene Therapy for Research and Therapeutic Purposes.
Annu Rev Virol. 2014 Nov;1(1):427-51. doi: 10.1146/annurev-virology-031413-085355.
2
A mechanism for the suppression of homologous recombination in G1 cells.
Nature. 2015 Dec 17;528(7582):422-6. doi: 10.1038/nature16142. Epub 2015 Dec 9.
3
Gene therapy returns to centre stage.
Nature. 2015 Oct 15;526(7573):351-60. doi: 10.1038/nature15818.
4
Brains, genes, and primates.
Neuron. 2015 May 6;86(3):617-31. doi: 10.1016/j.neuron.2015.03.021.
5
An alternative pluripotent state confers interspecies chimaeric competency.
Nature. 2015 May 21;521(7552):316-21. doi: 10.1038/nature14413. Epub 2015 May 6.
6
Therapeutic genome editing: prospects and challenges.
Nat Med. 2015 Feb;21(2):121-31. doi: 10.1038/nm.3793.
8
Long-term safety and efficacy of factor IX gene therapy in hemophilia B.
N Engl J Med. 2014 Nov 20;371(21):1994-2004. doi: 10.1056/NEJMoa1407309.
9
Intravenous injections in neonatal mice.
J Vis Exp. 2014 Nov 11(93):e52037. doi: 10.3791/52037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验